FOREIGN OBJECT IMPACT DAMAGE < TO COMPOSITES

STP 568

AMERICAN SOCIETY FOR TESTING AND MATERIALS

FOREIGN OBJECT IMPACT DAMAGE TO COMPOSITES

A symposium sponsored by ASTM Committee D-30 on High Modulus Fibers and Their Composites AMERICAN SOCIETY FOR TESTING AND MATERIALS Philadelphia, Pa., 20 Sept. 1973

ASTM SPECIAL TECHNICAL PUBLICATION 568
L. B. Greszczuk, symposium chairman

List price \$22.75 04-568000-33

AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race Street, Philadelphia, Pa. 19103

© by AMERICAN SOCIETY FOR TESTING AND MATERIALS 1975 Library of Congress Catalog Card Number: 74-28975

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Printed in North Wales, Pa.
January 1975

Foreword

The Symposium on Foreign Object Impact Damage to Composites was held at the American Society for Testing and Materials Headquarters in Philadelphia, Pa., on 20 Sept. 1973. The symposium was sponsored by ASTM Committee D-30 on High Modulus Fibers and Their Components. L. B. Greszczuk, McDonnell Douglas Astronautics Co., served as the symposium chairman.

Related ASTM Publications

Composite Materials: Testing and Design (Third Conference), STP 546 (1974), \$39.75 (04-546000-33)

Applications of Composite Materials, STP 524 (1973), \$16.75 (04-524000-33) Analysis of the Test Methods for High Modulus Fibers and Composites, STP 521 (1973), \$30.75 (04-521000-33)

Contents

Introduction	1
Impact Response of Structures and Structural Components	
Comparison of the Ballistic Impact Response of Metals and Composites for	
Military Aircraft Applications—J. G. AVERY AND T. R. PORTER	3
Structural S/V Design Methodology	4
Test Data Comparisons	5
Design Allowable Prediction Development	14
Predicted Design Allowables Comparison	24
Concluding Remarks	26
Impact Damage Tolerance of Graphite/Epoxy Sandwich Panels-	
D. W. OPLINGER AND J. M. SLEPETZ	30
Experimental Procedures	31
Experimental Results	35
Sandwich Panel Analysis	42
Discussion and Conclusions	46
Impact Response of Graphite-Epoxy Flat Laminates Using Projectiles	
That Simulate Aircraft Engine Encounters—J. L. PRESTON, JR.	
AND T.S. COOK	49
Flat Panel Impact Testing	50
Effect of the Projectile Characteristics	50
Results of Flat Panel Projectile Characteristic Tests	59
Impact Force Model	61
Application to Turbine Engine Blades	68
Comparison of Residual Strength of Composite and Metal Structures	
After Ballistic Damage— J. A. SUAREZ AND J. B. WHITESIDE	72
Experimental Program	72
Test Results	75
Comparison with Metals	77
Summary	91
Analytical Treatments and Studies of Material Response to Impact	
Residual Strength Characterization of Laminated Composites Sub-	
jected to Impact Loading—G. E. HUSMAN, J. M. WHITNEY,	
AND J. C. HALPIN	92
Nomenclature	92
Analysis	95
Experimental Procedure	100
Discussion	100
Conclusions	109
Impact Strength and Toughness of Fiber Composite Materials—	
L. J. BROUTMAN AND A. ROTEM	114
The Apparatus	115

Glass Fiber Composites	116
Conclusions	133
	133
Methods for Improving the Impact Resistance of Composite Materials—	134
P. W. R. BEAUMONT, P. G. RIEWALD, AND C. ZWEBEN Background	134
Study of the Charpy Impact Test for Composite Materials	136
Comparison of Charpy and Quasi-Static Tests	138
	146
Influence of Specimen Geometry Investigation of Impact Behavior of Unidirectional Composite	140
Materials Using the Instrumented Charpy Test	146
Unidirectional Graphite and Kevlar 49-Graphite Hybrid Com-	140
-	148
posites	140
Impact Behavior of Thin Composite Aircraft Fuselage Skin	151
Materials	151
Summary and Conclusions	130
Failure Mechanisms in Composite Plates Impacted by Blunt-Ended	
Penetrators—N. CRISTESCU, L. E. MALVERN, AND R. L.	
SIERAKOWSKI	159
The Delamination Mechanism	164
Some Details on the Glass-Epoxy Plate Fabrication and Testing	167
Other Mechanisms	168
Conclusions	171
Behavior of Laminated Composite Plates Subjected to Impact-	
R. W. MORTIMER, P. C. CHOU, AND J. CARLEONE	173
Governing Equations	174
Experimental Procedure	175
Results	177
Response of Isotropic and Composite Materials to Particle Impact—	
L. B. GRESZCZUK	183
Nomenclature	183
Theoretical Considerations	185
Impact Response of Isotropic Materials	186
Impact Response of Composite Materials	193
Target Failure Modes Caused by Particle Impact	204
Conclusions	209
Studies on the Impact Structural Damage of Composite Blades—	
C. T. SUN AND R. L. SIERAKOWSKI	212
Nomenclature	212
Analysis	214
Results and Discussion	218
Concluding Remarks	226

Analysis of Impact Stresses	in Composite Plates—J. T. KUBO AND
R.B. NELSON	

Analysis of Impact Stresses in Composite Plates—J. T. KUBO AND	
R.B. NELSON	228
Analytical Formulation	230
Results	233
Conclusions	240