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fOREWORD 

The Proceedings contain the papers presented at the Sixteenth Symposium on Optical Materials for 

High Power Lasers held at the National Bureau of Standards (NBS) in Boulder, Colorado, on 

October 15-17, 1984. The Symposium was jointly sponsored by the National Bureau of Standards, the 

American Society for Testing and Materials, the Office of Naval Research, the Defense Advanced Research 

Projects Agency, the Department of Energy, and the Air Force Office of Scientific Research. The 

Symposium was attended by approximately 200 scientists from the United States, the United Kingdom, 

France, West Germany, and the Netherlands. It was divided into sessions devoted to the following 

topics: f̂laterials and Measurements, Mirrors and Surfaces, Thin Films, and finally Fundamental Mechanisms. 

The Symposium Co-Chairmen were Dr. Harold E. Bennett of the Naval Weapons Center, Dr. Arthur H. Guenther 

of the Air Force Weapons Laboratory, Dr. David Milam of the Lawrence Livermore National Laboratory, 

and Dr. Brian E. Newnam of the Los Alamos National Laboratory. They also served as editors of this 

report. Dr. Alexander J. Glass of KMS Fusion acts as Conference Treasurer with Aaron A. Sanders of 

the National Bureau of Standards as the Conference Coordinator. 

The editors assume full responsibility for the summary, conclusions, and recommendations contained 

in the report and,for the summaries of discussion found at the end of each paper. The manuscripts of 

the papers presented at the Symposivun have been prepared by the designated authors, and questions 

pertaining to their content should be addressed to those authors. The interested reader is referred 

to the bibliography at the end of the sinnmary article for general references to the literature of laser 

damage studies. The Seventeenth Annual Symposium on this topic will be held in Boulder, Colorado, 

from October 28-30, 1985. A concerted effort will be made to ensure closer liaison between the 

practitioners of high peak-power and the high average-power community. 

The principal topics to be considered as contributed papers in 1985 do not differ drastically from 

those enumerated above. We expect to hear more about improved scaling relations as a function of pulse 

duration, area, and wavelength, and to see a continuing transfer of information from research activities 

to industrial practice. New sources at shorter wavelengths continue to be developed, and a corresponding 

shift in emphasis to short wavelength and repetitively pulsed damage problems is anticipated. Fabrication 

and test procedures will continue to be developed, particularly in the diamond-turned optics and thin-

film areas. Comprehensive modeling studies are, as well, anticipated. 

The purpose of these symposia is to exchange information about optical materials for high power 

lasers. The editors will welcome comment and criticism from all interested readers relevant to this 

purpose, and particularly relative to our plans for the Seventeenth Annual Symposium. 

H. E. Bennett, A. H. Guenther, 

D. Milam, and B. E. Newnam 

Co-chairmen 

DISCLAIMER 

Certain papers contributed to this publication have been prepared by non-NBS authors. These papers 

have not been reviewed or edited by NBS; therefore, the National Bureau of Standards accepts no res

ponsibility for comments or recommendations contained therein. 

Certain commercial equipment, instruments, and materials are identified in this publication in 

order to explain the experimental procedure adequately. Such identification in no way implies approval, 

recommendation, or endorsement by the National Bureau of Standards, nor does it imply that the equipment, 

instruments, or materials identified are necessarily the best available for the purpose. 
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Symposium Welcome and Perceptions of Future Research 

Brian E. Newnam 
Los Alamos National Laboratory-
Los Alamos, New Mexico 87545 

On behalf of the Symposium Steering Committee of Drs, Harold Bennett, Arthur Guenther, 
David Milam, and myself, I welcome all of you to the l6th Annual Symposium on Optical Materials for 
High Power Lasers. Having participated in these Symposia since 1971, I recognize among you a 
number of persistent old timers as well as many new faces. Obviously, these Symposia are still of 
great interest to a significant number of scientists in the laser community. For the last several 
years, we have comprised between 180 and 200 participants and between 40 and 60 papers, as revealed 
by figure 1, a chart of our experience. 

In his opening remarks at last year's Boulder Damage Symposium, Art Guenther reviewed the main 
themes of laser damage research of the previous 15 years. This year I want to describe my percep
tions of the progress needed in the near future. Do you recall the fervor of activity in the late 
1960's associated with America's Apollo spacecraft mission? A major concern in those days was the 
impact of the space environment on the thermal control surfaces such as white reflective paints and 
second-surface metal mirrors. The potentially dangerous elements of the space environment included 
solar ultraviolet radiation, electrons and protons in the Van Allen radiation belts, micrometeor-
ites, and the vacuum of space. A number of aerospace companies assembled space effects laborato
ries, including high-pressure arc lamps, to simulate the ultraviolet portion of the solar radiation 
and charged-partide simulation chambers. These environmental simulations produced a large amount 
of very useful data on radiation resistance. Thus, adequately damage-resistant materials were 
identified or subsequently developed, and the mission to the moon was a resounding success. 

Today, similar attention is beginning to be focused on the effects of machine-produced high-
energy radiation environments on the window materials and reflective coatings in lasers driven by 
electron accelerators. Currently, there is much concern about optical elements in the large 
e-beam-driven excimer lasers for 248 and 351 nm, in particular. Besides having adequate damage 
resistance for the primary uv laser wavelength, optical coatings must survive the impact of elec
trons of 100 to >300 kV energies and the resultant x rays. To add further insult, some of the 
coatings must function in a fluorine gas environment! Laboratory research on coating degradation 
for e-beam-pumped excimer lasers has been proceeding now for only one or two years. 

Recently, another very important accelerator-driven device, the free-electron laser (FEL), has 
become prominent. Having been associated with the FEL research program at Los Alamos for the last 
five years, I cun very optimistic about its future role in such applications as materials research, 
industrial chemistry, medical surgery, as well as a potential military tool. Since the first op
eration of an FEL oscillator at 3-4 um at Stanford University in 1977 [1]. there has been a number 
of FEL oscillator demonstrations extending from the visible through the sub-millimeter range. 
Table 1 lists the experimental progress. For more information, the interested reader should con
sult the review article of Charles Brau [9]. 

FELs require electron accelerators with energies ranging from a few MeVs for submillimeter 
waves to 100 to 200 MeV for visible wavelengths. Upon collision with various materials in the ac
celerator structure, electrons with such energies naturally produce other high-energy radiations, 
such as X rays, gamma rays, and neutrons. Additionally, the periodic wiggling motion of the elec
trons traveling through the magnetic undulator (gain region) naturally produces harmonics of the 
fundamental lasing wavelength. For example, for an FEL lasing at 500 nm, there can be significant 
power in the harmonics in the extreme-ultraviolet range (<100 nm). The optical elements composing 
the oscillator cavity and the external directing mirrors cannot be allowed to degrade significantly 
by any of these radiations. 

In the first tests with an infrared (10 ym) FEL oscillator at Los Alamos, electrons caused 
some permanent damage and x rays caused temporary color centers in the NaCl Brewster windows. The 
presence of transient absorption was also suspected. With the resulting round-trip losses, the FEL 
could not reach the lasing threshold. To avoid these losses and attain vigorous lasing, it was 
necessary to remove the Brewster windows, leaving the cavity mirrors in the vacuum [6,8]. 

vii 
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Although radiation-Induced degradation of output windows between the laser and atmosphere will 
still be a concern for powerful, visible-wavelength FELs, the primary future requirement will be for 
cavity reflectors with reflectances of the order of 99.9$ which are not significantly degraded by 
the multiple environments. We should take note that in the last year FEL researchers at the Univer
sity of Paris at Orsay have already had to contend with actual degradation of resonator mirror coat
ings (TiOg/SiOg) induced by ~120-nm photons associated with lasing at 640 nm. 

The frontier for FELs, as well as for laser oscillators based on harmonic generation and four-
wave mixing, is in the VUV and XUV. Attainment of sufficiently high reflectance below 100 nm to 
permit lasing is a present limitation. However, the recent attainment by Barbee, et al. [10] of 
over 50% reflectance at near-normal incidence at 17 nm by a Mo/Si multilayer reflector is very en
couraging. Such a reflectance over a large enough surface could make an XUV FEL oscillator possi
ble. Who knows? Perhaps one of the topics about which we will hear in future Laser Damage Symposia 
will be the damage resistance of 100-nm reflectors! 

In concluding, I wish to extend our gratitude to the staff of the National Bureau of Standards 
at Boulder for making these fine facilities available, and for their great assistance in the plan
ning, arrangements, and conduct of our meeting plus their part in preparing the proceedings for 
publication. These include Dr. Robert Kamper, Chief of NBS-Boulder, Aaron Sanders, Head of the Op
tical Electronic Metrology Group and the NBS Coordinator of these meetings, and Susie Rivera, 
Aaron's able administrative assistant who has dealt with almost all facets of these Symposia over 
the years. Other involved NBS staff are ftnn Mannos, Kathy Sherlock, and Shirley Deeg. Pat Whited 
of the Air Force Weapons Laboratory has also participated in the meeting planning and arrangements. 
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Table 1 

Summary of Visible and Infrared Free-Electron Laser Oscillators 

1977 

1983 
(June) 

1983 
(July) 

1983 
(November) 

Stanford University [1] 

University of Paris 
and Stanford 
University [2] 

TRW Inc. and Stanford 
University [3] 

Los Alamos [4] 

Wavelength 

3.1 ym 

640 to 655 nm 

1.6 ym 

9 to 11 um 

Peak Power 

400 kW 

16 W 

1.2 MW 

700 kW 

Average Power* 

5 W 

5 X 10"'* W 

80 W 

1000 W 

1984 

1984 
(March) 

1984 
(August) 

1984 
(October) 

Yerevan Phys. Inst. 
(Armenia) [5] 

Los Alamos [6] 

University of 
California at 
Santa Barbara [7] 

Los Alamos [8] 

-40 urn 

9 to 11 ym 

400 \im 

9 to 35 ym 

-6 kW 

5 MW 

-10 kW (est.) 

10 MW 

10 W 

3000 W 

3000 W 

6000 W 

"Average over electron macropulse 






