

Bearing Steel

Technologies: 12th Volume, Progress in Bearing Steel Metallurgical **Testing and Quality** Assurance

STP 1623

Editor:

John Beswick

SELECTED TECHNICAL PAPERS STP1623

Editor: John M. Beswick

Bearing Steel Technologies: 12th Volume, Progress in Bearing Steel Metallurgical Testing and Quality Assurance

ASTM STOCK #STP1623 DOI: 10.1520/STP1623-EB

Library of Congress Cataloging-in-Publication Data

ISBN: 978-0-8031-7692-8

ISSN: 2160-2050

Copyright © 2020 ASTM INTERNATIONAL, West Conshohocken, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

Photocopy Rights

Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by ASTM International provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

ASTM International is not responsible, as a body, for the statements and opinions expressed in this publication. ASTM International does not endorse any products represented in this publication.

Peer Review Policy

Each paper published in this volume was evaluated by two peer reviewers and at least one editor. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM International Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of the peer reviewers. In keeping with long-standing publication practices, ASTM International maintains the anonymity of the peer reviewers. The ASTM International Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM International.

Citation of Papers

When citing papers from this publication, the appropriate citation includes the paper authors, "paper title," in *STP title*, book editor(s) (West Conshohocken, PA: ASTM International, year), page range, paper doi, listed in the footnote of the paper. A citation is provided on page one of each paper.

Printed in Hanover, PA

August, 2020

Foreword

THIS COMPILATION OF Selected Technical Papers, STP1623, *Bearing Steel Technologies: 12th Volume, Progress in Bearing Steel Metallurgical Testing and Quality Assurance*, contains peer-reviewed papers that were presented at a symposium held May 15–17, 2019, in Denver, CO, USA. The symposium was jointly sponsored by ASTM International Committee A01 on Steel, Stainless Steel and Related Alloys, and Subcommittee A01.28 on Bearing and Power Transmission Steels.

Symposium Chair and STP Editor:

John M. Beswick Montfoort, The Netherlands

Contents

Overview	ix
Rolling Bearing Failure Modes and Advanced Analysis	
Review on Crack Initiation and Premature Failures in Bearing Applications	1
Reinder H. Vegter and Kenred Stadler	
Influence of Steel Cleanliness on RCF and WEC Formation	26
Toni Blass, Xiaohong Xu, Kirsten Wunder, Werner Trojahn, Ke Geng, and Feng Li	
Rolling Contact Fatigue Transformations in Aero Steels:	
The Effect of Temperature on Microstructural Decay	50
Xingzhong Liang, Finn Sykes, and Pedro E. J. Rivera-Díaz-del-Castillo	
Microcleanliness Relationships and Testing of Air-Melt Bearing Steels	
Quantitative Ultrasonic Characterization of Subsurface Inclusions in Tapered	
Roller Bearings	66
Showmic Islam, Satyajeet P. Deshpande, Luz D. Sotelo, Musa Norouzian,	
Michael T. Lumpkin, Liesl F. Ammerlaan, Allen J. Fuller, and Joseph A. Turner	
Developments in RCF Testing of Bearing Steels	
Design and Validation of a Modular Rolling Contact Fatigue/Rolling-Sliding	
Contact Fatigue Testing Machine	82
Nicholas Novack, Robert L. Cryderman, and Trace A. Rimroth	
Investigation of Fatigue Behavior around Nonmetallic Inclusion Using a	
Newly Developed Rolling Contact Fatigue Test Method	103
Takeshi Fujimatsu	
Rolling Bearing Surface Damage and Effect on RCF Life	
Lubricant-Induced White Etching Cracks: Mechanism and Effects of Surface Finishing	131
Mohanchand Paladugu	

Surface Damage in Rolling Bearings and the Impact on Rolling Contact Fatigue Markus Dinkel, Xiaohui Zheng, Michael Warmuth, and Martin Correns	147
Effect of MnS on the Micropitting Behavior of Through Hardened Bearing Steel during Rolling Contact Fatigue Vikram Bedekar, Carl Hager, and R. Scott Hyde	169
Influence of Material, Heat Treatment, and Microstructure in Resisting White Etching Crack Damage Mohanchand Paladugu and R. Scott Hyde	182
Dimensional Stability	
Influence of Heat Treatment Conditions on the Dimensional Stability of SAE 52100 Christine Sidoroff-Coicaud, Christophe Le Bourlot, Carole Dessolin, Michel Perez, Victor Lejay, Pierre-Emmanuel Dubois, and Pierre Dierickx	202
Complexity of Dimensional Stability of Case-Hardened Bearing Components Pei Yan and Mohamed Y. Sherif	246
Developments in Bearing Component Manufacturing	
Selective Laser Melting (SLM) of M50NiL—Enabling Increased Degrees of Freedom in New Design Concepts Patrick Mirring, Andreas Rottmann, and Carsten Merklein	261
Manufacturing of Large-Diameter Rolling Element Bearings by Steel-Steel Multimaterial Systems Timm Coors, Maximilian Mildebrath, Florian Pape, Thomas Hassel, Hans Jürgen Maier, and Gerhard Poll	277
Ultrasonic Evaluation of Tailored Forming Components Florian Pape, Timm Coors, Tim Matthias, Bernd-Arno Behrens, and Gerhard Poll	300
Developments in Air-Melt Clean Bearing Steel Steelmaking	
Improved Processing Techniques for Inclusion-Free Steel for Bearing and Mechanical Component Applications Christopher DellaCorte	313
Performance and Reliability of Powder Metallurgy Steels for Aerospace Bearings Jacques Bellus, Christine Sidoroff-Coicaud, Viktor Sehlstedt, Atman Benbahmed, Johanna André, and Olivier Blanchin	332
The Use of SEM-EDS and PDA-OES Techniques to Help the Development of the Production of Bearing Steel Audrey Col, Andrea Spadaccini, Daniel Acevedo, and Christophe Stocky	352
Advances in Billet Cast Carbon Steel Quality for High-Performance Rolling Bearings Eduardo Scheid and Denise Correa de Oliveira	366

Improvements in GCr15 (52100) High Carbon Bearing Steel Steelmaking and Their Effect on Inclusions, Segregation, and Fatigue Properties			
Xiaohong Xu, Jigang Liu, Guoqing Xu, Qing Yin, Xudong Zhang, and Hans-Åke Munther			
New and Novel Steel Compositions for Advanced Rolling Bearing Usage			
Temperature-Resistant, Corrosion-Tolerant Carburizing Bearing Steel for Aero-Engine Applications Aidan Kerrigan, Alexandre Mondelin, Jean-Baptiste Coudert, Mohamed Y. Sherif, and Yves Mahéo	403		
High Performance Ferrium Steels for Aerospace Gearing and Bearing Applications Kerem Taskin	421		
Hybrid Steel and Its Potential for Bearing Applications	436		
Jan-Erik Andersson, Fredrik Lindberg, and Steve Ooi			
Application of Fracture Mechanics to Bearing Steel Property Characterization			
Effect of Carbide Segregation on Mode I Fatigue Resistance Properties of the Bearing Tool Steel Roll Blade Die Aleksej Molokanov, Martin Rawson, Tim Moreton, and Geoff West	455		
Relevance of Fracture Mechanics in Rolling Bearing: Functional Property Determination and Steel Quality Assurance Jean-Baptiste Coudert, Aidan Kerrigan, Alexandre Mondelin, and Yves Mahéo	474		
VIM-VAR Steel Know-How—Aero Steels Metallurgy and Functional Properties			
VIM-VAR Steel Know-How—Aero Steels Metallurgy and Functional Properties VIM-VAR Steelmaking for Bearing Steel Grades Stephen Carey	499		
VIM-VAR Steelmaking for Bearing Steel Grades			
VIM-VAR Steelmaking for Bearing Steel Grades Stephen Carey Melt Methods and Their Effects on Cleanliness for Bearing Performance Colleen Tomasello and George Shannon Spall Propagation Characteristics of Life-Tested VIM-VAR M50 and Pyrowear 675 Bearing Steels	515		
VIM-VAR Steelmaking for Bearing Steel Grades Stephen Carey Melt Methods and Their Effects on Cleanliness for Bearing Performance Colleen Tomasello and George Shannon Spall Propagation Characteristics of Life-Tested VIM-VAR M50 and	515		
VIM-VAR Steelmaking for Bearing Steel Grades Stephen Carey Melt Methods and Their Effects on Cleanliness for Bearing Performance Colleen Tomasello and George Shannon Spall Propagation Characteristics of Life-Tested VIM-VAR M50 and Pyrowear 675 Bearing Steels	515 528		
VIM-VAR Steelmaking for Bearing Steel Grades Stephen Carey Melt Methods and Their Effects on Cleanliness for Bearing Performance Colleen Tomasello and George Shannon Spall Propagation Characteristics of Life-Tested VIM-VAR M50 and Pyrowear 675 Bearing Steels Hitesh K. Trivedi, DaMari A. Haywood, Lewis Rosado, and Mathew S. Kirsch Spall Propagation Characteristics of As-Manufactured Aerospace Bearing Steels	515 528 551		
VIM-VAR Steelmaking for Bearing Steel Grades Stephen Carey Melt Methods and Their Effects on Cleanliness for Bearing Performance Colleen Tomasello and George Shannon Spall Propagation Characteristics of Life-Tested VIM-VAR M50 and Pyrowear 675 Bearing Steels Hitesh K. Trivedi, DaMari A. Haywood, Lewis Rosado, and Mathew S. Kirsch Spall Propagation Characteristics of As-Manufactured Aerospace Bearing Steels Hitesh K. Trivedi, DaMari A. Haywood, Mathew S. Kirsch, and Lewis Rosado Testing to Reveal Tribology Mechanisms for Advancing Bearing Steels Lavern D. Wedeven, William F. Black, Graham G. Wedeven,	515 528 551 574		

Author Index	649
Subject Index	651

Overview

There are occasions when jewels evolve from quite mundane beginnings, and the ASTM International bearing steel symposium series, starting in 1946, is an example of something special. The symposium "Rolling Bearing Steel: Progress in Bearing Steel Metallurgical Testing and Quality Assurance" was held May 15–17, 2019, in Denver, CO, USA. Symposia dedicated to bearing steel technologies follow an established tradition of ASTM support for the topic. Information on the past ASTM bearing steel symposia and related STP publications are given as follows:

Topic	Year	Location	Chairman	STP
Symposium on Testing of Bearings	1946	Buffalo	_	70
Rating of Non-Metallic Inclusions	1974	Boston	Joe Hoo	575
Roller Contact Fatigue Testing	1981	Phoenix	Joe Hoo	771
Effect of Steel Manufacturing Pro-	1986	Phoenix	Joe Hoo	987
cesses on the Quality of Bearing				
Steels				
Creative Use of Bearing Steels	1991	San Diego	Joe Hoo	1195
Bearing Steels: Into the 21st Century	1996	New Orleans	Joe Hoo and	1327
			Bill Green	
Sixth International Symposium on	2001	Phoenix	John Beswick	1419
Bearing Steels				
Advances and State of the Art in	2005	Reno	John Beswick	1465
Bearing Steel Quality Assurance				
Developments on Rolling Bearing	2009	Vancouver	John Beswick	1524
Steels and Testing				
Advances in Rolling Contact Fa-	2011	Tampa	John Beswick	1548
tigue Strength Testing and Related				
Substitute Technologies				
Advances in Steel Technologies for	2014	Toronto	John Beswick	1580
Rolling Bearings				
Progress in Steel Technologies and	2016	Orlando	John Beswick	1600
Bearing Steel Quality Assurance				
Progress in Bearing Steel Metallur-	2019	Denver	John Beswick	1623
gical Testing and Quality Assurance				

The aim of the ASTM bearing steels symposia has always been to facilitate an exchange of relevant technical information on rolling bearing steel technologies. Global participation of experts has always been a key feature, and without presenters and participants from outside North America, the symposia would not have been a success over the years. Bearing steel technologies plan and look forward to the ASTM events, and the attendance numbers are relatively stable but the global coverage continues to expand.

The majority of the presentations from the symposium have been compiled as peer-reviewed papers for publication as ASTM selected technical papers (STP1623). A rigorous peer-review process has been applied as befits a reputable technical publication. The STP editor is beholden to the peer reviews for finding time and motivation to perform this critical task. Experience has shown that the STPs are an excellent bearing steel technology reference, and the authors, their respective companies, and the anonymous peer reviewers are congratulated for their commitment to publication.

The symposium program contained 37 presentations with 110 persons registering for the 10 sessions during a two-and-half-day event. The symposium comprised the following sections:

Rolling Bearing Failure Modes and Advanced Analysis
Microcleanliness Relationships and Testing of Air-melt Bearing Steels
Developments in RCF Testing of Bearing Steels
Rolling Bearing Surface Damage and Effect on RCF Life
Dimensional Stability
Developments in Bearing Component Manufacturing
Developments in Air-melt Clean Bearing Steel Steelmaking
New and Novel Steel Compositions for Advanced Rolling Bearing Usage
Application of Fracture Mechanics to Bearing Steel Property Characterization
VIM-VAR Steel Know-How—Aero Steels Metallurgy and Functional Properties

Bearing metallurgists will recognize some familiar trends and some new directions in the STP1623 papers. The world is changing and the alloy steel technology trends have synergies, and the remit of the ASTM Subcommittee A01.28 has been revised since the 12th Bearing Steel Symposium. The subcommittee now covers bearing and transmission steels and as such is responsible for bearing and transmission steel specifications. The next ASTM bearing steel symposium event is destined to be the 1st ASTM Bearing and Transmission Steels Symposium, with new opportunities to apply alloy steel know-how to support the manufacture of better and added value transmission steel products. The opportunities arising from collaborations within the bearing and transmission steel technologies cannot be overestimated, and the merging of the relevant steel purchasing specifications can result in

improvements from both the technical and commercial perspectives. Merging of the specifications could improve the commercial margins to support purposeful R&D, related publications and the future ASTM symposia.

The STP editor is indebted to Jeff Fuller, the ASTM A01.28 Subcommittee Chairman, for supporting the symposium arrangements, and to the ASTM International organization for fostering the continuation of the symposia series. The following organizations provided financial support for the symposium; very many thanks for your sponsorship:

Jiangyin Xingchen Special Steel China
Amsted Rail Co., Inc USA
Ascometal France
Böhler Edelstahl GmbH Austria
Carpenter Technology Corporation USA
Charter Steel USA

FNsteel B.V. The Netherlands
Georgsmarienhütte (GMH) GmbH Germany
Gerdau Special Steel North America USA
Ovako AB Sweden
Saarstahl AG Germany
Sanyo Special Steel Japan

SKF B.V. The Netherlands

Timken USA
TimkenSteel USA

It has been the symposium chairman's privilege to have, on behalf of ASTM International, prepared the program, chaired the symposium, and edited the STP1623.

John M. Beswick Montfoort, The Netherlands

Cover photo courtesy SKF Group

ASTM INTERNATIONAL Helping our world work better

ISBN: 978-0-8031-7692-8 Stock #: STP1623 www.astm.org