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effect on damage area, 55 (fig), 367 
effect on compressive strength, 56 

(fig) 
first generation systems, 417 (fig) 

low energy specimen, 369 (fig) 
Impact loading, 417 

delaminations as result of, 223 
Impact resistance, 63, 70 

of brittle and tough matrix resin 
improved by interleafing, 429 

(fig) 
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laminate compressive failure 

modes, analytical model, 432 
(fig) 

Interleafing, 70, 428, 429 (fig) 
IPN (interpenetrating polymer net­

work. See Semi-interpene­
trating polymer network 

J -K 

JOEL microscope. See Scanning elec­
tron microscope 

Kelly-Tyson shear lag analysis, 168 
Kinetics, 438 
Kinking. See Fiber kinking 

Lamina stacking sequences, 175 
Laminate properties 

damage tolerance, 398 
influence of adhesion, 148 

Laminate stiffness 
effect on delamination fracture 

toughness, 109 
Laminate thickness 

cure cycle adjustments, 19 
exotherm versus, 20 (fig) 

Laminated plate theory 
interlaminar fracture toughness, 

203, 207 
Laminates in aircraft 

structural applications, 9 
tensile strength and stiffness com­

parisons, 12, 13 (fig) 
Linear beam theory, 119 

in calculation of energy release rate, 
99 

Load cycles, 278 
Load deformation curves, 362 
Load displacement curves, 281 (fig) 
Load displacement records, 280 

Model! tests, 100, 119 
Load ratio effects, 250, 258 
Lockheed Process Model 

aircraft applications, 438-439 (fig) 
experiment verification, 442-443 

(figs) 
use to predict cure behavior, 437 

Low energy impact (LEI) damage 
quasi-isotropic laminates, 362 

M 

Macro-buckling failure, 373, 376 
Material systems versus epoxy sys­

tems, 22 
Matrix cracking, 224, 290 

associated with stiffness reduction, 
229 

effect on delamination and metal 
crack growth rate, 224 

may be enhanced in presence of de­
lamination, 223 

stiffness reduction mechanisms. Ap­
pendix I, 240 

under static loading, 234 
Matrix fracture, 133, 212 
Matrix resins 

delamination susceptibility, 75 
Matrix synthesis, overview, 1 
Matrix toughness, 276, 281 

effects of, on composite properties, 
288 

improved, 290, 291 
Mechanical properties, 32 

composite fibers, 84, 175 
graphite epoxy laminates, 101 

test results, 102 (tables) 
of laminates, 38, 39 (table) 
of toughened resin graphite com­

posites, 23 



INDEX 477 

Mechanical tests, 166, 169, 173 
toughness, 117 

Methacry late-butadiene-styrene 
(MBS) 

rubber toughened plastic, 393 
Microbuckling, 398, 418 

of interlayered laminate, 429 
Microcracking, 106 (fig), 129, 418 

debonding, 104, 105 (fig), 121, 146 
during fatigue loading, 242 
in situ observations, 125-127 (figs) 
Mode II fracture surface, 282 
occurs ahead of crack tip, 143 

Micromechanics, overview, 3 
Mid plane delamination tests, 214 
Mixed mode 

critical energy release rate, 101, 121 
Mixed mode delamination tests, 214 
Mixed mode fracture, 296 

evaluating test methods, 306 
Mixed mode fracture toughness tests, 

97, 98 (fig) 
Mixed mode interlaminar fracture 

influence of resins 
literature review of data, 313 

toughness, 260, 276, 301, 307 
measurements for, 117 

Mixed mode toughening mechanisms, 
96 

Model, stress distribution, overview, 3 
Mode I crack growth resistance curves, 

282 (fig) 
Mode I critical strain energy release 

rate, 99, 120 (table), 215 (figs), 
260 

analysis, 118 
equations, 100, 118 

Mode I delamination fracture tough­
ness, 127, 206, 261 

Mode I delamination growth, 280 
Mode I fracture behavior, 106, 107 

(figs), 112, 282 
Mode I fracture toughness results, 122 
Mode I fracture toughness tests, 97, 98 

(fig), 116 
interlaminar fracture 

composite matrix materials and 
adhesives, 296 

of elastomer-modified matrix ep-
oxy, 261 

Mode I load displacement records, 121 
Mode I loading 

delamination toughness, 126, 129 
Mode I strain energy release, 91, 276 
Mode I toughening mechanisms for, 96 
Mode II critical strain energy release 

rate, 99 
analysis, 119 
equations, 100, 119 
for delamination fracture, 119 

Mode II delamination fracture tough­
ness, 113, 114, 116, 260 

Mode II fatigue behavior, 276, 282 
Mode II fatigue crack growth rate, 

284-287 (figs), 291 
Mode II fracture toughness results, 

122, 291 
Mode II fracture toughness tests, 97, 

98 (fig) 
toughening mechanisms for, 96 

Mode II hackling, 281 
Mode II interlaminar fatigue crack, 

287 
Mode II loading, 129, 300 
Mode II strain energy release rate 

graphite epoxy interlaminar frac-
mre, 276 

Mode III delamination fracture tough­
ness, 260 

Modulus characteristics 
improved resin systems, 12, 13 (fig) 

Moisture, 291 
effect on mixed mode fracture, 304 
effect on toughness, 300 
fiber bridging, 305 
influence on strain energy release 

rate, 208 
Molding, PEEK, 343 
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Molding, PPS, 320 
Molding process, PPS, 321 

prociessing variables, 326 
Morphology 

and mechanical properties, of 
PEEK, 344, 345, 350 

N 

Neat adhesive panels, 153 
Neat materials 

glass transition temperature, 162 
Neat resin, 89, 90 

new composite matrices, 422 (fig) 
Neat resin flexural strain, 424 (figs) 
Neat resin fracture tests, 80, 84, 97 

elastomer-modified epoxy, 269 
Neat resin fracture toughness, 102 

(table), 111-113 
Neat resin mechanical tests, 62, 76, 

77,99 
Neat resin modulus, 425 (fig) 
Neat resin moldings and composites, 

4, 89 
Neat resin properties 

as prediction of composite proper­
ties, 63-66 (figs) 

comparison, 426 (table) 
composite properties, comparison, 

427 (table) 
interleafing, 428 

Neat resin toughness, 128-129 
versus composite toughness, 386 

Nesting, 87, 91 
No-bleed cure, 19 
No-bleed resin system, 22 
Notch sensitivity, 56 

compressive failure 
of quasi-isotropic laminates, 39, 

49 (fig), 50 (fig), 51 (fig), 52 
dependent on matrix material, 52 
equations, 46 (table), 51, 52 
of composite plaques, 174 (fig) 
strength ratios, 53 (figs), 54 (figs) 

thermoplastic resins, 170 
versus unnotched specimens, 39 

Notched strength 
analysis, 

equations, 50-54 (figs) 
in composite materials, 

parameters of influence, 175 
Notched tension, 25 

O 

Opening mode 
toughness measurements for, 117 

Orientation hardening 
ductile polymers, 389, 392, 394 

Orthotropic fibers, 189 
graphite and aramid shear lag mod­

els, 180 

PEEK (polyetheretherketone) matrix, 
279, 285, 288, 302 

annealing peak, compared to PPS, 
322 

DSC analysis, 325 (fig), 349 
glass transition temperature, 342 
hysteresis, 290 (fig) 
interlaminar toughness, 307 
mechanical properties and mor­

phology, 343, 344 (fig), 345 
(fig), 351 (table) 

microstructure, 352-354 
tensile properties, 357 
tension testing, 350 

PETG (amorphous polyester), 170, 
175 

Photomicrographs. See Scanning elec­
tron microscope (SEM) 

Plane-strain fracture toughness 
hybridized composites, 404 

Plastic deformation, 389 
PEEK system, 281 

Plastic zone size 
in a tough bulk polymer, 385 (fig) 
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neat resin, 386 (table) 
Ply orientation 

effect on delamination fracture 
toughness, 109 

Polyacrylonitrile-butadiene-styrene 
(ABS) films, 393 

Polyamideimide, 78 
Polycarbonate 

composite fabrication, 77 
crack growth, 83 

Poly(etheretherketone) matrix (PEEK). 
See PEEK matrix 

fiber/matrix debonding, 288 
Polyethyerimide 

composite fabrication, 77 
fracture toughness testing, 79 (figs), 

88 
Polyethylene 

predicting work of adhesion, 175 
Polyethylene terephthalate (PET), 175, 

329 
cross-ply PET/graphite strip experi­

ments, 330 
differential scanning calorimetry 

(DSC), 335 (fig) 
dynamic mechanical analysis 

(DMS), 338 (fig) 
specific volume, 332 (fig) 
temperature independent parame­

ters, 337 (table) 
Polymer matrix composites, 384 

delamination failure mode, com­
pared to bonded joints, 295 

Polymer morphology, SIPN 
of neat resin blend 

cure cycle, 458 
TEM photograph, 458 (fig) 

Polymeric coatings to increase tough­
ness, 151 

Polymeric modifiers, 422 
Polymers 

toughening mechanisms, 388 
overview, 3 

Polymethyl methacrylate (PMMA) 

relaxation behavior, 391 
Polyphenylene sulfide (PPS), 4, 320. 

See also Ryton-PPS 
carbon fiber composite 

DSC analysis, 323-324 (figs) 
thermal transitions, 322 

morphological structure of com­
posites, 321 

thermal history and mechanical 
properties of film, 322 (table) 

Polyphenylene sulfide (matrix), 147 
fracture surfaces, 139, 144-145 

(figs) 
Polystyrene 

predicting work of adhesion, 175 
Polysulfones (PSF), 329 

composite fabrication, 77 
cross-ply composit strip experi­

ments, 330 
dilatation, effect on toughness, 301 
dynamic mechanical analysis 

(DMS), 338 (fig) 
fiber volumes, 84 
fracture toughness testing, 79 (figs), 

88 
specific volume of, 332 (fig) 
temperature independent parame­

ters, 337 (table) 
toughenability limitations, 383, 386 

Polytetramethyleneoxy 
predicting work of adhesion, 175 

Polyvinyl chloride (PVC) 
rubber toughened plastic, 393 

Postimpact compression, 23, 30 
tests, 31 (figs) 
failure strain versus damage area 

material comparisons, 32 (fig) 
PPS. See Polyphenylene sulfide 
Prepreg laminates, 62 
Prepreg preparation, 152, 157 
Properties 

polyphenylene sulfide (PPS), 326 
(tables) 

Pseudoplasticity 
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advanced matrix resin systems, 445, 
447, 450 (fig) 

Quasi-isotropic laminates 
compressive failure of, 38, 43, 47, 

56 
versus unidirectional laminates, 

48 (fig) 
unnotched specimens, 39-40 

compressive properties, 46 (table) 
compressive strengths of, 47 (fig) 
impact tests, 27-29 (figs) 
structural performance 

weight saving over aluminum, 
415 (fig) 

tensile strain-to-failure, 26 (figs) 

R 

R curve (fatigue load ratio), 232-233 
(figs), 239 

Radial stress 
single fiber test, 186, 187-188 (figs) 

Rate effects 
delamination fracture toughness, 

261, 271 
Reaction exotherm 

in epoxy resin curing, equations, 
439-440 

Relaxation process, low temperature, 
and ductility, 391, 394 

Residual stresses 
thermoplastic matrices, 329, 338, 

340 
Resin adhesion, 129 
Resin bleed 

processing requirements, 17 
Resin deformation, 113 
Resin fracture 

versus interfacial debonding, 121 
Resin matrix materials 

strain energy release rates, 213 (fig) 
Resin matrix systems 

for aircraft applications, 437 

Resin modification techniques, 398 
Resin modulus 

compressive strength influence, 418 
key factor in structural performance, 

398 
Resin stress-strain behavior, 299, 300 

(fig) 
Resin systems, 296 (table) 

composites, influence of resin con­
tent, 83 

compression after impact, 64-65 
(figs) 

criteria for selection, 21 
improvement of, 12 
no-bleed resin system, 22 
tensile properties, 102 (table) 
tests, 25 (fig) 

Resin tensile modulus, 47 (fig), 56 
overview, 3 

Resin toughness, 116, 307-310 
adding elastomeric materials, 96 
increases compressive strength, 23 

Resin-whisker blends, testing proce­
dure, 402 

Resin yielding, 145-148 
Rheometric measurement, 439 (fig) 
Rheometrics tests 

on neat resin specimens, 99 
Rubber modified epoxies, 392 

in adhesive joints, 388 
Rubber modifiers, 384 
Rubber particle additions, 112 

efficacy in enhancing composite de-
lamination fracture toughness, 
109 

neat resin fracture toughness, 108 
Rubber toughened graphite/epoxy 

fiber bridging, 280 
static tests, 279 

Rubber toughened neat matrix resins, 
stress-strain properties, 422 (fig) 

Rubber toughened plastics 
rubber particle size effect, 393 

Ryton-PPS (Polyphenylene sulfide), 
320 See also Polyphenylene 
sulfide 
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annealing, effect on mechanical 
properties, 326 (table) 

transverse tensile properties, ef­
fect of annealing, 326 (table) 

Scanning electron microscope (SEM), 
116,133,154. See also Delami-
nation fracture, Fractography 

hybridized composites, fracture sur­
faces, 407 (fig) 

Semicrystalline polymers, 389 
physical and mechanical properties, 

321, 454 
PEEK, 357 

semi-interpenetrating polymer net­
work (SIPN), 454 

Semicrystalline thermoplastics, 329, 
338 

Semi-interpenetrating polymer net­
work (SIPN), 454 

chemical resistance, 461 (table) 
mechanical properties, 458 
polymer morphology, 458 

Shear, 275, 276, 291 
Shear lag analysis, 189 

Kelly-Tyson, 168 
Shear mechanical tests, 68 (fig), 71 

(fig) 
Shear mode 

toughness measurements for, 117 
Shear modulus 

quasi-isotropic laminates, effect of 
buckling stress, 45 

Shear strength test, single fiber, 179 
Shear stress 

interfacial, 168, 187 (fig) 
interlaminar crack growth, 276 
stable neck propagation, 389 

Shear yielding 
process leading to ductility, 389 

Silane coated glass 
versus "bare" glass 

critical length determination, 177 
(fig) 

predicted to increase shear adhesion 
strength, 176 

Silicon carbide (SiC) whiskers 
effect on epoxy resin, 398, 401 
whisker characteristics, 400 

Single fiber test, 179, 180, 181 (figs) 
shear strength, 182 (table), 189 

Single-step pressure cycle, 19 
SIPN. See Semi-interpenetrating poly­

mer network 
Smoke generation 

tests for new resin systems, 21, 22 
(fig) 

Smooth resin fracture, 134 
Spectrometer, dynamic mechanical, 97 
Stable neck propagation 

process leading to ductility, 389 
Static tests, 245, 279, 280 (table), 290 

effect of matrix toughness on de-
lamination, 291 

Stiffness loss, 233 
caused by damage accumulation, 

243 
effect of matrix cracking and de-

lamination, 226, 242 
in presence of delaminations, 223, 

227, 229 (fig) 
stiffness reduction mechanisms. Ap­

pendix I, 239 (table), 244, 258 
tests, 225 

Stiffness properties, 245, 258 
temperature dependence of, 340 

Strain 
accelerates processes leading to 

ductility, 389 
Strain energy release rates, 223, 233, 

235, 238 
brittle systems, 302 
cracked lap shear specimens 

finite element analysis of, 299 
toughness tests data, 303 (table) 

fatigue cycles, graphite/epoxy, 
251-254 (figs), 258 

for delamination onset, 213 (fig) 
fracture toughness, 79, 201, 260 

influence of thermal/moisture 
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Stresses on, 207 (fig) 
interlaminar fracture tests, 296 
interlaminar fracture toughness, 

mixed mode. Mode I, Mode II, 
302 

loading ratio parameters, 243, 250 
Mode I improvement, 75, 261 

Strain limitation 
from compressive test data, 12 
weight trade studies, 10 

Strain-to-failure fibers 
testing, 26, 32, 62, 71 

Strength 
loss of, in presence of delami-

nations, 223 
of advanced technology wing, 11 

(fig) 
Strength and modulus characteristics, 

12 
improved toughness composites, 24 

Strength comparisons 
of quasi-isotropic laminates, 32 (fig) 

Strength-modulus comparison, 13 (fig) 
Stress 

relaxation behavior 
of polymethyl methacrylate 

(PMMA) 391 
versus extension ratio behavior 

of ductile glassy polymer, 390 
(fig) 

Stress analysis 
appendix, equations, 190-196 
interlaminar normal stress, 229 

(table) 
model, single broken fiber, 184 

(fig), 188 
overview, 3 

Stress distribution 
single fiber shear strength test, 179, 

180 
interface mechanics, 186 (fig), 

187-188 (figs) 
of fiber-resin interface, 146 (fig) 

Stress intensity factor, 223 

Stress-strain behavior 
brittle and tough neat resins, 423 

(figs) 
epoxy systems, 420 
glassy polycarbonate, 389 
neat resins, 99, 421 (fig) 
PEEK films, 350-351 (figs) 
resin-whisker blends, 402 
resins, 300 (fig) 

Stress-strain curves, 43, 44 (fig), 46 
(fig), 225 

Structural design properties 
of graphite fiber composites, 151 

Supplementary reinforcement 
hybrid composites, 397 

Surface energy calculations in adhe­
sion 

basic theory, calculations, 167-168 
Surface energy components 

graphite, 172 (table) 
Surface energy measurements, 169 

(table), 176 
graphite, Wilhelmy balance, 171 

(table) 

Temperature, 291. See also High 
temperature 

thermoplastics 
dimensionless curvature as a 

function of temperature, 334 
(figs) 

Temperature behavior prediction 
model, for curing advanced graphite/ 

epoxy laminates, 452 
thermograms, 451 (figs) 

Temperature profiles 
cure cycle, resin matrix for aircraft 

applications, 443, 444 (fig) 
exotherm versus laminate thickness, 

20 (fig) 
glass transition, of resins, 102 

(table) 
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Temperature relaxation process 
in choice of polymers for tough­

ening, 390 
Temperature requirements 

commercial versus military, 12 
Tensile behavior, static, 25 
Tensile properties 

coated fiber composites, 162 
in silane systems, 176 

Tensile strength 
failure, 16 

strain comparison, 26 (fig) 
neat resin, stress-strain curves, 

155-156 (figs) 
overview, 2 

Tension-tension fatigue tests, 224, 227 
(fig), 244 

Tension tests 
of matrix resins, 142, 144 (figs) 
of glass/polycarbonate composites, 

175 
of PEEK, 350 
on neat adhesives, 154, 155-156 

(figs) 
on neat resin systems, 99 
results, 102 (table) 
to measure fracture toughness of 

composites, 200 
Test conditions 

graphite composites, 24 
Test correlations, 62 
Test equipment 

dynamic mechanical spectrometer, 
97 

Tests and test procedures 
graphite composites versus alumi­

num structures, 21 
impact damage, 27, 28-29 (figs) 
postimpact compressive behav­

ior, 30 
graphite/epoxy, 203 
neat adhesives, tension tests, 154 
quasi-isotropic laminates 

experimental procedures materi­

als evaluated, 25 (table) 
static tensile-behavior, 25 

Tetraglycidylether methylene di-
aniline, 140, 142 

Tetraglycidylmethylenedianiline 
(TGMDA)/diaminodiphenyl-
sulfone (DDS) 

Lockheed Process Model, 437-438 
(figs) 

polymerization exotherm, 447 
Thermal analysis 

of thermoplastics, 329 
Thermal analyzer model 

for advanced matrix resin systems 
aircraft applications, 451 

Thermal expansion 
coefficient of (CTE), 245, 336 
of PET, 332 

Thermal history, PEEK, 343 
Thermal stress 

influence on strain energy release 
rate, 208 

single fiber tests, 186 
thermoplastic matrices, 329, 333, 

338, 340 
Thermal treatment, effect on fiber pull-

out, 135, 137 (fig) 
Thermochemistry 

important in cure process modeling, 
447 (fig) 

Thermokinetic model 
aircraft applications, 438, 439 (fig) 

Thermoplastic compounds 
added to brittle resins, 10 

Thermoplastic composites 
fabrication procedures, 77 
fiber-matrix bonding, 88 
interlaminar fracture, 88 
overview, 3, 4 
PEEK, 342 
resistance to impact damage, 21 
semi-interpenetrating polymer net­

works (SIPN), 454 
tested by Douglas Aircraft, 12 
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Thermoplastic matrices, 329, 333, 
338, 340 

Thermoplastic polymers, 383 
toughening with elastomers, 393 

Thermoplastic resins, 83 
notch sensitivity study, 170 
wettability, 166 

Thermosets, 76, 78, 88 
cross-linked, 140 
overview, 4 

Thermosetting polymers, 383 
Thickness, exotherm versus laminate, 

20 (fig) 
Tough coatings 

on graphite fibers, 151 
Tough composites, 384 

overview, 2 
Tough epoxy matrix resin systems, 398 
Tough epoxy systems 

tests, 77 
Tough polymer tests 

strain energy release rates, 80 
Tough resins, 25, 89 

as coating for graphite fibers, 151 
crack-tip deformation, 91 
criteria for selection, 17, 21 
Douglas Aircraft, 12, 16 (fig) 
elastomer-modified epoxies, 261 
formulated by adding elastomeric or 

thermoplastic compounds, 10, 
12 

tension tests, 26 (figs) 
Tough systems, 305, 306 (fig) 
Toughened epoxies, 115 
Toughened epoxy matrix systems, 444 
Toughened epoxy resins, 61 

fracture aspects, 74 
laminates, 95 
strain energy release, 84, 85 (fig) 

Toughened resins, 413 
Toughening, 383 
Toughening mechanisms 

graphite epoxy composites, 96 
in plastics, 393 

Toughness 
coated fiber composites, 161-162 

(figs) 
versus uncoated composites, 162 

delamination resistance, test, 16 
graphite-epoxy composites, 116, 

217, 243 
graphite fiber composites, 276, 281 

relative effects of matrix tough­
ness on, 288 

need for improved toughness, 151 
transfer from matrix to com­

posite, 290 (fig) 
increased with fiber debonding be­

fore resin cracking, 126 
interlaminar fracture 

mixed mode data, 301 
tests, 201 

mechanical tests, 62, 67 
Mode I versus Mode II, 299 
PEEK, 357 
single fiber shear strength test, 179 

Transverse sheer modulus, 45 
Transverse strength 

improved by tough coatings, 151 
Transverse tests 

glass tow, 170 
tension tests of glass/polycarbonate 

composites, 175 
Unidirectional laminates, 56, 62 

U-V 

Viscoelastic effects 
on behavior of tough composites, 2 

Viscosity. See also Chemoviscosity 
Viscosity behavior 

toughened resin systems, 445 
Viscosity profile 

advanced resin matrix, 448-449 
(figs), 

for cure cycle, resin matrix aircraft 
applications, 443, 444 (fig) 

Viscosity profile measurement 
for cure cycle conditions, 19 (fig) 
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Weight comparison for bending 
stiffness 

advanced technology wing design 
criteria, 10, 11 (fig) 

Wettability, 176 
of thermoplastics, 166 

Wetting of individual filaments 
by matrix resin, 166 

Whisker-resin impregnation process, 
412 

Width-tapered double cantilever beam 

(WTDCB) specimen, 261, 263 
(fig). See also Double can­
tilever beam test 

Wilhelmy balance measurements 
glass and graphite, 171 (table) 

Wilhelmy Technique 
method of measuring angles on fil­

aments, 167-168 

Zinc iodide enhanced radiography, 
224, 227 (fig) 




