CROSSLINKED AND THERMALLY TREATED ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE FOR TEODOGCOMPANY TEODOGCOMPANY STP 1445

EDITORS Steven M. Kurtz, Ray A. Gsell, John Martell

STP 1445

Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene for Joint Replacements

Steven M. Kurtz, Ray A. Gsell, and John Martell, editors

ASTM Stock Number: STP1445

ASTM International 100 Barr Harbor Drive PO Box C700 West Conshohocken, PA 19428-2959

Printed in the U.S.A.

Library of Congress Cataloging-in-Publication Data

Crosslinked and thermally treated ultra-high molecular weight polyethylene for joint replacements / Steven M. Kurtz, Ray A. Gsell, and John Martell, editors.

p. cm. — (STP;1445) "ASTM Stock number: STP 1445." Includes bibliographical references and index. ISBN 0-8031-3474-6

Orthopedic implants--Materials--Congress. 2. Polyethylene--Therapeutic use--Congresses.
Artificial joints--Congresses. 4. Biomedical materials--Congresses. 5. Implants, Artificial--Congresses. I. Kurtz, Steven M., 1968- II. Gsell, Ray A., 1944- III. Martell, John, 1957- IV. ASTM special technical publication ; 1445.

RD755.5.C768 2004 617.5'80592--dc22

2003065983

Copyright © 2004 ASTM International, West Conshohocken, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

Photocopy Rights

Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by ASTM International (ASTM) provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923; Tel: 978-750-8400; online: http://www.copyright.com/.

Peer Review Policy

Each paper published in this volume was evaluated by two peer reviewers and at least one editor. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM International Committee on Publications.

To make technical information available as quickly as possible, the peer-reviewed papers in this publication were prepared "camera-ready" as submitted by the authors.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of the peer reviewers. In keeping with long-standing publication practices, ASTM International maintains the anonymity of the peer reviewers. The ASTM International Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM International.

Foreword

The Symposium on Crosslinked and Thermally Treated Ultra-High Molecular Weight Polyethylene (UHMWPE) for Joint Replacements was held in Miami Beach, Florida on 5–6 November, 2002. ASTM International Committee F04 on Medical and Surgical Materials and Devices served as the sponsor. Symposium co-chairmen and co-editors of this publication were Steven Kurtz, Exponent, Inc., Philadelphia, PA; Ray Gsell, Zimmer, Inc., Warsaw, IN; and John Martell, University of Chicago, Chicago, IL.

Contents

Foreword	iii
QUANTIFYING CLINICAL RESPONSE	
Generalized Size and Shape Description of UHMWPE Wear Debris—A Comparison of Cross-Linked, Enhanced Fused, and Standard Polyethylene Particles— C. M. SPRECHER, E. SCHNEIDER, AND M. A. WIMMER	3
SHORT-TERM RETRIEVALS	
Microscopy of Highly Cross-Linked UHMWPE Wear Surfaces—C. B. RIEKER, R. KONRAD, R. SCHÖN, W. SCHNEIDER, AND N. A ABT	19
Retrieval Analysis of Cross-Linked Acetabular Bearings —J. P. COLLIER, M.B MAYOR, B. H. CURRIER, AND M. W. WITTMAN	32
Assessment of Surface Roughness and Waviness Using White Light Interferometry for Short-Term Implanted, Highly Crosslinked Acetabular Components— S. M. KURTZ, J. TURNER, M. HERR, A. A. EDIDIN, AND C. M. RIMNAC	41
CROSSLINKED PE IN KNEES: IS IT SAFE?	
Improved Resistance to Wear, Delamination and Posterior Loading Fatigue Damage of Electron Beam Irradiated, Melt-Annealed, Highly Crosslinked UHMWPE	
Knee Inserts —J. Q. YAO, C. R. BLANCHARD, X. LU, M. P. LAURENT, T. S. JOHNSON, L. N. GILBERTSON, D. F. SWARTS, AND R. D. CROWNINSHIELD	59
The Effect of Crosslinking UHMWPE on In Vitro Wear Rates of Fixed and Mobile Bearing Knees—D. E. MCNULTY, S. W. SWOPE, D. D. AUGER, AND T. SMITH	73

VI CONTENTS

The Wear of Highly Crosslinked UHMWPE in the Presence of Abrasive Particles:	
Hip and Knee Simulator Studies—M. P. LAURENT, C. R. BLANCHARD, J. Q. YAO,	
T. S. JOHNSON, L. N. GILBERTSON, D. F. SWARTS, AND R. D. CROWNINSHIELD	86
The Sensitivity of Crosslinked UHMWPE to Abrasive Wear: Hips versus Knees-	
V. D. GOOD, K. WIDDING, M. SCOTT, AND S. JANI	104
Multiaxial Fatigue Behavior of Oxidized and Unoxidized UHMWPE During Cyclic	
Small Punch Testing at Body Temperature—M. L. VILLARRAGA, A. A. EDIDIN.	
M. HERR, AND S. M. KURTZ	117
The Effect of Reduced Fracture Toughness on Pitting and Delamination Type Wear of Elevated Cross-Linked Polyethylene—S. A. MAHER, B. D. FURMAN,	
AND T. M. WRIGHT	137
Wear and Structural Fatigue Simulation of Crosslinked Ultra-High Molecular Weight Polyethylene For Hip and Knee Bearing Applications—A. WANG,	
M. MANLEY, AND P. SEREKIAN	151
MECHANICAL PROPERTIES	
The Effect of Aging on Mechanical Properties of Melt-Annealed Highly Crosslinked	
UHMWPE—S. BHAMBRI, R. GSELL, L. KIRKPATRICK, D. SWARTS, C. R. BLANCHARD,	
AND R. D. CROWNINSHIELD	171

The Flow Ratio Effect on Oriented, Crosslinked Ultra-High Molecular Weight	
Polyethylene (UHMWPE)—R. S. KING, S. K. YOUNG, AND K. W. GREER	183

The Effect of Specimen Thickness on the Mechanical Behavior of UHMWPE	
Characterized by the Small Punch Test—S. M. KURTZ, M. HERR, AND A. A. EDIDIN	192

IN-VITRO TESTING

The Effects of Raw Material, Irradiation Dose, and Irradiation Source on Crosslinking of UHMWPE—K. W. GREER, R. S. KING, AND F. W. CHAN	209
Characterization of the Wear Performance of Crosslinked UHMWPE and	
Relationship to Molding Procedures—K. R. ST. JOHN AND R. A. POGGIE	221
Influence of Electron Beam Irradiation Dose on the Properties of Crosslinked	
UHMWPE—N. A. ABT, W. SCHNEIDER, R. SCHÖN, AND C. B. RIEKER	228
Development of a Model For Testing Third Body Wear of UHMWPE Acetabular	
Components—C. R. BRADGON, D. O'CONNOR, O. K. MURATOGLU, AND W. H. HARRIS	240
Elevated Crosslinking Alone Does Not Explain Polyethylene Wear Resistance—	
B. D. FURMAN, S. A. MAHER, T. G. MORGAN, AND T. M. WRIGHT	248

Cover image courtesy of Zimmer, Inc.

ISBN # 0-8031-3474-6 Stock #: STP1445

www.astm.org