Subject Index

A	Bituminous mixes
Abrasiometer, road surface characteristics,	high performance measurements, 305–325
305–325	polishing properties, 113–126 profile of, 292–302
Abrasion resistance, concrete pavement,	Blank tire, skid resistance, 138–153
327–342	British Pendulum Tester
Acceleration testing, road surface characteristics, 305–325	friction mechanism of grooved road sur-
Accident rates, winter road conditions, 442–	faces, 127–137
453	skid resistance, 103–112 Bush hammering, road surface characteris-
Accuracy, pavement management measure-	tics, 305–325
ments and criteria, 355-365	165, 365 325
Aerodynamic disturbance effect, splash and	C
spray, 528-540 Aerodynamic phenomena, splash and spray,	C
528–540	Calibration methods
Aggregates	inertial profilometer, 292–302
high performance measurements, 305–325	surface roughness and vehicle operating costs, 416-428
performance evaluation, 512–527	Cement mortar, surface deterioration resis-
polishing properties, 113–126	tance, 327–342
skid resistance predictability, 61–76 surface deterioration resistance, 327–342	Chippings, polishing resistance, 14-29
unpaved road surfaces, 268–291	Closed-loop calibration procedure, skid re-
Aircraft braking performance, 154–166	sistance, 103–112
Aircraft/ground-vehicle friction measure-	Coast-down tests, road surface characteristics, 480–495
ment, 154–166	Compressive strength, surface deterioration
Antilock brake system (ABS), skid resistance, 138–153	resistance, 327–342
Asphalt mixtures	Concrete pavement
performance evaluation, 512–527	numerical analysis of friction mechanism,
polishing properties, 121–126	127–137
skid resistance, 14–29	surface-deterioration resistance, 327–342 Construction zones, roadway surface char-
tire noise generation, 430–440	acteristics, 245–257
ASTM Recommended Practices D 3319, 63–64, 66, 68	Contaminated runways, aircraft/ground-ve-
ASTM Standards, E 303–83, 106–107, 110–	hicle friction measurement, 154–166
111	Controllability, dynamic vehicle behavior,
ASTM Test Methods	198–210 Correlation coefficient
C 535–83, 328	inertial profilometer, 292–302
D 75, 66 E 274, 152	polishing resistance, 14–29
E 274, 132 E 274–85, 55–56	Crossfall, road surface characteristics, 305-
E 303, 63–64, 66	325
E 303-83, 114	Curve radius, road surface characteristics,
E 501, 140–141	305–325
E 524, 140–141	_
В	D
Binder, bituminous asphalt performance,	Data collection errors, surface distress, 343-

577

353

512-527

Defect of focus, vehicle-to-pavement distance measurement, 77-86 Design criteria, bituminous asphalt performance, 512–527 Developing countries, surface roughness and vehicle operating costs, 416-428 Developing Spectrum dynamic vehicle behavior, 198–210 fuel consumption, 460-479 Disintegration resistance, asphalt performance evaluation, 512-527 Drainage, tire noise generation, 430-440 Dynamic load, flexible pavements, 383–397 Dynamic vehicle behavior, rutted road, 198- High-performance measurements, road sur-

E

Elevation profile, bituminous concrete, 292-302 Energy loss, rolling resistance measurement, Hydraulic bench tests, fuel consumption 497-504 Errors in data collection, pavement surface distress, 343-353 Evaluation scheme, polishing resistance studies, 14-29 Evenness. (see Unnevenness) F Field testing, polishing resistance of sand, 14-29 Filler, bituminous asphalt performance, 512-Finite-element analysis, friction mechanism of grooved road surfaces, 127-137 Flexible pavements management measurements and criteria, Linear regression analysis, pavement ride roughness-induced dynamic load, 383-397 Location referencing, road network assesssurface-smoothness evaluation, 224-236 Friction coefficient, skid resistance, 5-13, Longitudinal evenness, pavement manage-138 - 153Friction mechanism numerical analysis, 127-137 roadway surface characteristics, 245-257 skid resistance, 138–153 Fuel consumption macrotexture, 460-479 macrotexture and, 454-459 megatexture, 460–479 road surface characteristics, 480-495

rolling resistance, 401–414

49

Fuzzy-cluster analysis, skid resistance, 39–49

Fuzzy sets mathematics, skid resistance, 39-

G

Gravel loss, unpaved road surfaces, 268–291 Great Britain, skid resistance policy, 30–37 Grooved road surface, numerical analysis of friction mechanism, 127-137 Ground friction-measurement vehicles, air-

craft/ground-vehicle friction measurement, 154-166

Hardness testing machines, polishing properties, 115-126

face characteristics, 305-325

High-speed road monitor (HRM), road network assessment, 184-196

Highway design evaluation models, surface roughness and vehicle operating costs, 416-428

and, 454-459

Icy road conditions, skid resistance, 442-453 In-service roads, British skid-resistance policy, 30-37

Intervention, road surface characteristics, 305-325

L

Laboratory testing, polishing resistance of sand, 14-29

Laser profilometer, vehicle-to-pavement distance measurement, 77–86

quality, 259-267

ments, 189-196

ment criteria, 355-365

Longitudinal friction coefficient, bituminous asphalt performance, 512-527

Longitudinal skid resistance, road surface characteristics, 305-325

M

Macrotexture.

bituminous asphalt performance, 512-527 British measurements and results, 87–101 fuel consumption, 454-459, 460-479 road network assessment, 188-196 skid resistance, 138-153

Maintenance guidelines, pavement manage- Pavement roughness ment, 355-365 pavement ride quality, 259–267 Mays Ride Meter rideability predications, 171–183 bituminous concrete, 292–302 **Pavements** flexible pavements, 224-236 flexible, 224-236 Mean transverse slope, traffic safety, 211high-performance measurements, 305-325 profile roughness measurements, 259-267 Megatexture, fuel consumption, 460-479 Pavement surface characteristics British measurements and results, 87-101 Microtexture British measurements and results, 87–101 distress data collection errors, 343-353 errors in distress data collection, 343–353 skid resistance, 138–153 Mineral hardness, polishing properties, 113– fuel consumption, 480-495 high-performance measurements, 305–325 measurement principles, methods and Mix design, polishing properties, 122–126 Multiple-regression analysis, fuel consumpconditions, 366-381 tion tests, 482-484 optimization, 505–511 Multi-year plans, pavement management rolling resistance and, 401–414 measurements and criteria, 355-365 roughness measurement, Noss roughness meter, 237-244 skid resistance, 5-13 N tire noise generation, 430-440 transverse unevenness, 211-222 National Skidding Resistance Survey unpaved roads, 268-291 (NSRS) (Great Britain), 32–37 vehicle operating costs, 416-428 Nondestructive testing, vehicle-to-pavement vehicle-to-pavement distance measuredistance measurement, 77-86 Nonlinear regression analysis, pavement ride ment, 77–86 Pavement wetness sensitivity, tire-pavement quality, 259-267 Noss roughness meter, road roughness meafriction, 52–60 surement, 237-244 PAVSCAN system, 99–101 Permeability, bituminous asphalt perfor-Numerical analysis, friction mechanism of grooved road surfaces, 127-137 mance, 512-527 Polishing properties aggregates, 113–126 bituminous pavement surfaces, 113-126 Optimization, road surface characteristics, resistance 505-511 sand, 14–29 Oscillating wheel method, rolling resistance skid resistance, 5-13 measurement, 497-504 Porous mixes, performance evaluation and analysis, 512-527 Portland cement concrete, profile of, 292-P

Panel rating

pavement ride quality, 259-267 pavement roughness, 171-183 Pavement condition analysis, fuzzy sets mathematics, 39-49 Pavement edge conditions, loss of vehicle control, 245-257 Pavement management fuzzy-sets mathematics, 39-49 measurements and criteria, 355-365 surface roughness and vehicle operating costs, 416-428

Pavement rideability profile roughness measurements, 259-267 roughness measurements, 171–183

R

Profile measurements, road network assess-

Profilographs, flexible pavements, 224–236

pavement roughness measurements, 171-

pavement ride quality, 259-267

rolling resistance, 401-414

302

Profilometer

183

ment, 184-196

Random process theory, road management guidelines, 366-381 Reciprocating polishing maching, 113-126

Regression analysis, polishing properties, Shaft encoder, skid resistance, 138–153

113-126 Shoulder conditions, roadway surface characteristics, 245-257 Response-type equipment road management guidelines, 366-381 Sideway-Force Coefficient Routine Investigation Machine (SCRIM), roughness measurement system, 171–183 Ribbed tire, skid resistance, 138–153 Riding comfort index (RCI), 305–325 British measurements and results, 87-101 RMS ratio, dynamic vehicle behavior, 198– high-performance measurements, 305–325 210 Skid angles, high-performance road surface Road alignment measurements, 189-196 measurements, 305-325 Road classes, profile roughness measure-Skid number, 138–153 ments, 259-267 Skid resistance Road management systems, measurement asphalt concrete, 14–29 principles, methods and conditions, British measurements and results, 87–101 366–381 British policy development, 30–37 Road network surface characteristics, asclosed-loop calibration procedure, 103sessment methods, 184–196 112 Road noise, rolling resistance, 401–414 friction mechanism of grooved road sur-Road profiles, flexible pavements, 224–236 faces, 127-137 Road surface characteristics. (see Payment fuzzy sets mathematics, 39-49 surface characteristics) longitudinal, 305–325 measurement principles, methods and Rolling resistance fuel consumption, 454-459, 460-479 conditions, 366-381 oscillating method, 497-504 predictability with laboratory aggregate road surface characteristics, 401–414, 480– testing, 61–76 495 road surface texture, 5-13 Roughness characteristics splash and spray, 528-540 flexible pavements, 224–236 transverse unevenness and, 211–222 winter road conditions, 442–453 high-performance measurements, 305–325 Slipperiness, unpaved road surfaces, 268measurement, 77–86 models, pavement ride quality, 259–267 291 Noss roughness meter, 237-244 Smoothness, high-performance road surface measurements, 305-325 tire noise generation, 430–440 unpaved road surfaces, 268-291 Snowy roads, skid resistance, 442–453 Roughness-induced dynamic load, flexible Sound absorption, tire noise generation, 430-440 pavements, 383–397 Running test, dynamic vehicle behavior, Speed 198-210 rolling resistance, 401–414 skid resistance, 138–153 Rut measurement channels, 211-222 surface roughness and vehicle operating dynamic vehicle behavior, 198-210 costs, 416-428 Spindown, skid resistance, 138–153 depths, 211–222 flank slope, 211–222 Spinup, skid resistance, 138–153 pavement management measurements and Splash, skid resistance, 528-540 criteria, 355-365 Spray, skid resistance, 528–540 road network assessment, 189-196 Stability dynamic vehicle behavior, 198–210 roadway surface characteristics, 245-257 Standard Index Value, inertial profilometer, 292-302 Safety, roadway surface characteristics, 245– Statistical analysis, pavement ride quality, Sand characteristics 259-267 Steel fibers, surface deterioration resistance, deterioration resistance, 338-342 327-342 polishing resistance, 14–29 Seasonal variation, skid resistance predict- Surface characteristics. (see Pavement surability, 61-76 face characteristics)

Surface-deterioration resistance, concrete Unevenness pavement, 327-342 Surface-smoothness evaluation, flexible

pavements, 224-236

Suspension impact, flexible pavement performance, 383-397

Texture meter (see also Pavement surface characteristics)

high-performance road surface measurements, 305-325

skid resistance, 87–101

Tire noise, surface characteristics, 430-440 Tire/pavement friction

aircraft/ground-vehicle friction measurement, 154–166

roadway surface characteristics, 245-257 rolling resistance, 401-414, 497-504 water-film thickness, 50–60

Tire pressure, fuel consumption and, 480-495

Torque, skid resistance, 138–153

Tractor semi-trailers, roadway surface characteristics, 245-257

Traffic safety, transverse unevenness, 211-

Transition zone, transverse unevenness, 211 - 222

Transverse unevenness and traffic safety. 211-222

Trucks, splash and spray, 528–540

U

surface measurements, 305-325

fuel consumption, 454-459

measurement principles, methods and conditions, 366-381

rolling resistance, 401-414

Unpaved roads, surface characteristics, 268– 291

\mathbf{v}

Vehicle operating costs

road surface characteristics, 480-495 surface characteristics, 416-428

Vehicle-pavement interaction

distance measurement, laser noncontact methods, 77-86

measurement principles, methods and conditions, 366–381

Visual inspection, pavement management measurements and criteria, 355–365

Water-cement ratio, surface deterioration resistance, 327-342

Water depth (hypothetical), transverse unevenness, 211-222

Water-film thickness, tire-pavement friction, 50-60

Water ponding, transverse unevenness, 211–

Water run-off obstruction, transverse unevenness, 211-222

Wear tests, surface-deterioration resistance, 327-342

Wehner/Schulze polishing machine, 15-22

Ultrasonic sensor, high-performance road Winter road conditions and accidents, 442-453