
Mechanics of FATIGUE CRACK CLOSURE

Newman/Elber Editors

Mechanics of Fatigue Crack Closure

J. C. Newman, Jr. and Wolf Elber, editors

ASTM Publication Code Number (PCN):04-982000-30

ISBN: 0-8031-0996-2

Library of Congress Catalog Card Number: 88-6303

Copyright © by American Society for Testing and Materials 1988

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM.

Foreword

The International Symposium on Fatigue Crack Closure was held in Charleston, SC, on 1–2 May 1986. ASTM Committees E-24 on Fracture Testing and E-9 on Fatigue were cosponsors. J. C. Newman, Jr., NASA Langley Research Center, and Wolf Elber, U.S. Army Aerostructures Directorate, presided as symposium chairmen and are editors of this publication.

Herbert F. Hardrath

Dedication

Herbert F. Hardrath contributed greatly to the success of ASTM Committee E-9 on Fatigue. He was a member of the committee from 1958 until his death on 25 September 1985, and was the Chairman of Committee E-9 from 1966 to 1971.

Herb grew up in Manitowoc, WI, and joined the Navy during World War II. He received a Bachelor of Science and a Master of Science degree in Civil Engineering at Tulane University and the Case Institute in Cleveland, OH. In 1947, he joined the National Advisory Committee on Aeronautics (NACA) as a Structural Engineer to forge a fatigue research effort. In 1952, he became the Head of the embryonic Fatigue Section. Under his leadership, the Fatigue Section became a Branch at the National Aeronautics and Space Administration (NASA) Langley Research Center. In 1970, he was elevated to Assistant Division Chief of the Materials Division. Also in 1970, he received a Special Achievement Award for his amassed contributions. Herb retired from NASA in 1980.

Herb was very active in ASTM Committee E-9 on Fatigue. He received the ASTM Award of Merit in 1970 for his many contributions to fatigue research and for the development of fatigue standards. He was invited, in 1970, to present the AIAA Structures Design Lecture. In 1972, he presented the ASTM Gillett Memorial Lecture and, in 1974, he presented the AIAA Dryden Research Lecture. Because of his expertise in fatigue and fracture mechanics, Herb was chosen to be part of a select group to visit technical centers in the U.S.S.R. in 1976.

Herb was the United States delegate to the International Committee on Aeronautical Fatigue (ICAF) from 1965 to 1980. In 1971, he hosted an international meeting of ICAF in Miami, FL. He presented the Sixth Plantema Memorial Lecture to open the 1977 ICAF meeting in the Federal Republic of Germany.

As an eminent fatigue expert, he was chosen to participate in many investigations of fatigue problems in military and commercial aircraft, such as the B-47, F-111, C-5, and the DC-10.

Herb is remembered for more than his technical accomplishments; he was a model for personal integrity and dedication.

Contents

Introduction	1
Mechanisms	
Fatigue Crack Closure: Observations and Technical Significance—JAAP SCHIJVE	5
On Crack Closure in Fatigue Crack Growth—ARTHUR J. MCEVILY	35
Plasticity Induced Fatigue Crack Closure—DAVID L. DAVIDSON	44
Overview of Crack Closure at Near-Threshold Fatigue Crack Growth Levels— PETER K. LIAW	62
On the Role of Crack Closure Mechanisms in Influencing Fatigue Crack Growth Following Tensile Overloads in a Titanium Alloy: Near Threshold Versus Higher ΔK Behavior—C. M. WARD-CLOSE AND R. O. RITCHIE	93
The Effect of Test Frequency and Geometric Asperities on Crack Closure Mechanisms—JATIN K. SHETH AND WILLIAM W. GERBERICH	112
The Dependence of Crack Closure on Fatigue Loading Variables— STEPHEN J. HUDAK, JR. AND DAVID L. DAVIDSON	121
Crack Closure: Correlation and Confusion—R. W. HERTZBERG, C. H. NEWTON, AND R. JACCARD	139
Crack-Closure Effects on the Growth of Small Surface Cracks in Titanium-Aluminum Alloys—James M. Larsen, James C. Williams, and anthony W. Thompson	149
MEASUREMENTS	
A Comparison of Measurement Methods and Numerical Procedures for the Experimental Characterization of Fatigue Crack Closure—John E. Allison, ROLAND C. KU, AND MARK A. POMPETZKI	171

Effects of Load History and Specimen Geometry on Fatigue Crack Closure Measurements—NOEL E. ASHBAUGH	186
Comparison of Methods for Measuring Fatigue Crack Closure in a Thick Specimen—S. K. RAY AND ALTEN F. GRANDT, JR.	197
A Method for Determining Crack Opening Load from Load-Displacement Data— C. DAVIS CARMAN, C. CHRISTOPHER TURNER, AND BEN M. HILLBERRY	214
A Procedure for Standardizing Crack Closure Levels—J. KEITH DONALD	222
A Statistical Approach to Crack Closure Determination—LINDA J. ROBERSON AND MARK T. KIRK	230
Determination of Crack Opening Load by Use of Threshold Behavior— H. DÖKER AND V. BACHMANN	247
Crack Closure Behavior of Surface Cracks Under Pure Bending—REZA FOROUGHI AND JOHN C. RADON	260
Closure Measurements on Short Fatigue Cracks—Joo-Jin Lee and William N. Sharpe, Jr.	270
Closure Behavior of Small Cracks Under High Strain Fatigue Histories— R. CRAIG MCCLUNG AND HUSEYIN SEHITOGLU	279
Development of Fatigue Crack Closure with the Extension of Long and Short Cracks in Aluminum Alloy 2124: A Comparison of Experimental and Numerical Results—R. O. RITCHIE, W. YU, D. K. HOLM, AND A. F. BLOM	300
Analyses	
Analysis of Crack Closure Under Plane Strain Conditions—NORMAN A. FLECK AND JAMES C. NEWMAN, JR.	319
Fatigue Crack Closure Outside a Small-Scale Yielding Regime—PAUL L. LALOR AND HUSEYIN SEHITOGLU	342
An Analytical Investigation of Plasticity Induced Closure Involving Short Cracks— THEODORE NICHOLAS, ANTHONY N. PALAZOTTO, AND EUGENE BEDNARZ	361
Correlation Between Numerically Predicted Crack Opening Load and Measured Load History Dependent Crack Growth Threshold—Louis Anguez And Georges Baudin	380
Three-Dimensional Finite-Element Simulation of Fatigue Crack Growth and Closure—R. G. CHERMAHINI, K. N. SHIVAKUMAR, AND J. C. NEWMAN, JR.	398
Predictions of Fatigue Crack Growth Behavior Using a Crack Closure Ligament Model—FARAMARZ KEYVANFAR AND DREW V. NELSON	414

Analysis of Crack Opening Behavior by Application of a Discretized Strip Yield	
Model—arij u. de koning and gert liefting	437
Analysis of Fatigue Crack Closure Caused by Asperities Using the Modified	
Dugdale Model—HARUO NAKAMURA AND HIDEO KOBAYASHI	459
Analytical and Experimental Study of Crack Closure Behavior Based on an	
S-Shaped Unloading Curve—DAI-HENG CHEN AND HIRONOBU NISITANI	475
Appropria	
APPLICATIONS	
A Simple Crack Closure Model for Predicting Fatigue Crack Growth Under Flight Simulation Loading—Daniel aliaga, alain davy, and hubert schaff	491
The Influence of Crack Closure on Fatigue Crack Growth Thresholds in 2024-T3 Aluminum Alloy—EDWARD P. PHILLIPS	505
Correlation of Fatigue Crack Growth Data Obtained at Different Stress Ratios— GEOFFREY S. BOOTH AND STEPHEN J. MADDOX	516
GEOFFREI S. BOOTH AND STEPHEN J. MADDOX	510
Fatigue Crack Closure Behavior of High Stress Ratios—C. CHRISTOPHER TURNER, C. DAVIS CARMAN, AND BEN M. HILLBERRY	528
Using Acoustic Waves for the Characterization of Closed Fatigue Cracks— OTTO BUCK, R. BRUCE THOMPSON, AND DAVID K. REHBEIN	536
OTTO BOCK, R. BRUCE INOMISON, AND DAVID R. REIBEIN	550
The Effect of Closure on the Near-Threshold Fatigue Crack Propagation Rates of a	5. 40
Nickel Base Superalloy—LARRY P. ZAWADA AND THEODORE NICHOLAS	548
Influence of Fatigue Crack Wake Length and State of Stress on Crack Closure—	
JACK TELESMAN AND DOUGLAS M. FISHER	568
Influence of Some Mechanical Parameters on the Crack Closure Effect in Fatigue	
Crack Propagation in Aluminum Alloys—ALAIN CLERIVET	583
AND CLAUDE BATHIAS	203
Three-Dimensional Aspects of Fatigue Crack Closure in Surface Flaws in	
Polymethylmethacrylate Material—WILLIAM A. TROHA,	50 0
THEODORE NICHOLAS, AND ALTEN F. GRANDT, JR.	598
Effects of Closure on the Fatigue Crack Growth of Small Surface Cracks in a	
High-Strength Titanium Alloy—JAY R. JIRA, TUSIT WEERASOORIYA,	C17
THEODORE NICHOLAS, AND JAMES M. LARSEN	617
Summary	637
Index	645