
The Use of Synthetic Environments for Corrosion Testing

Francis/Lee, editors

STP 970 (1)

The Use of Synthetic Environments for Corrosion Testing

P. E. Francis and T. S. Lee, editors

Copyright © by American Society for Testing and Materials 1988

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM.

Foreword

The symposium on the Use of Synthetic Environments for Corrosion Testing was presented at the National Physical Laboratory, Teddington, Middlesex, England on 10-12 Feb. 1986. The symposium was sponsored by ASTM Committee G-1 on Corrosion, Deterioration, and Degradation of Materials and the National Physical Laboratory. P. E. Francis, National Physical Laboratory, and T. S. Lee, National Association of Corrosion Engineers, served as chairmen of the symposium and are editors of the resulting publication.

Contents

Introduction	1
Corrosion Studies in Complex Environments—GERHARDUS H. KOCH,	
J. MICHAEL SPANGLER, AND NEIL G. THOMPSON	3
Discussion	17
Simulating Automotive Exposure for Corrosion Testing of Trim Material—	
GARDNER S. HAYNES AND ROBERT BABOIAN	18
The Effects of SO ₂ Scrubber Chemistry on Corrosion of Structural Materials—	
FLORIAN MANSFELD AND SAMUEL L. JEANJAQUET	27
Testing Methods for Indoor and Outdoor Atmospheric Corrosion—CHRISTIAN FIAUD	58
Discussion	68
Review of Corrosion Studies of Metal Containers Using Synthetic Media—	
THOMAS P. MURPHY AND GRAHAM A. PAPE	69
Discussion	78
Synthetic Environments for the Testing of Metallic Biomaterials—ANSELM T. KUHN,	
PETER NEUFELD, AND TREVOR RAE	79
Discussion	96
Laboratory Evaluation of Materials for Resistance to Anaerobic Corrosion by	
Sulfate-Reducing Bacteria: Philosophy and Practical Design—	
JAMES F. D. STOTT, B. S. SKERRY, AND R. A. KING	98
Discussion	111
Comparison and Control of Microbial Spoilage of Metal-Working Fluids and	
Associated Corrosion—EDWARD C. HILL, GRAHAM C. HILL, AND	440
DAVID A. ROBBINS	112
Alloy Ranking for Corrosion Resistance Laboratory Tests Versus Field Exposures-	
WILLIAM L. SILENCE, STEPHEN M. COREY, AND JURI KOLTS	120
Synthetic Solutions and Environment Sensitive Fracture—R. N. PARKINS	132
Discussion	141
Intergranular Corrosion of Austenitic Stainless Steels—An Electrochemical,	
Potentiokinetic Test Method—DERECK R. JOHNS	142
Discussion	151
Ammonia Test for Stress Corrosion Resistance of Copper Alloys—EINAR MATTSSON,	
ROLF HOLM, AND LARS HASSEL	152

A Synthetic Environment to Simulate the Pitting Corrosion of Copper in Potable	
Waters—Paul D. GOODMAN, VICTOR F. LUCEY, AND CARLO R. MASELKOWSKI	165
The Use of Synthetic or Natural Seawater in Studies of the Corrosion of Copper	
Alloys—james e. castle, anthony h. l. chamberlain, bradley garner,	
M. SADEGH PARVIZI, AND ABRAHAM ALADJEM	174
The Effect of Dissolved Copper on the Erosion-Corrosion of Copper Alloys in Flowing	
ASTM Seawater—wing k. CHEUNG AND JOHN G. N. THOMAS	190
Synthetic Versus Natural Marine Environments for Corrosion Testing—	
KENNETH L. MONEY AND ROBERT M. KAIN	205
Laboratory Solutions for Studying Corrosion of Aluminum Alloys in Seawater—	
STEPHEN C. DEXTER	217
Particle Containing Formation Water for the Study of Erosion Corrosion—	
THOMAS KOHLEY AND EWALD HEITZ	235
Discussion	244
Pitting of AISI 410 Stainless Steel in CO ₂ -Saturated Synthetic Seawater and	
Condensate—DALE R. McINTYRE	246
Simulating the Pitting Corrosion of Steel Reinforcement in Concrete—JOHN M. SYKES	
AND PETER H. BALKWILL	255
The Electrochemistry of Steel Corrosion in Concrete Compared to Its Response in Pore	
Solution—J. L. DAWSON AND P. E. LANGFORD	264
Discussion	273
Materials Performance for Residential High Efficiency Condensing Furnaces—	
BARRY HINDIN AND ARUN K. AGRAWAL	274
Summary	287
Index	291