
APPENDIX IV

THE WEIBULL DISTRIBUTION FUNCTION FOR FATIGUE LIFE*

On the assumption that fatigue failures are initiated at the "weakest link,"
the fatigue lives of a group of specimens tested under a given set of conditions
may be represented by one of a family of frequency distribution functions:

where:
N = specimen life,
No ^ 0 = minimum life parameter,
Na = characteristic life parameter occurring at the 63.2 per cent

failure point for the population [63.2 = 100(e - \/e), e = 2.718],
and

b > 0 = Weibull shape (or "slope") parameter.

This function is a simple exponential distribution function when 6 = 1; the
Rayleigh distribution function when b = 2; and a good approximation of the
Normal distribution function when b = 3.57, that is, when the mean and the
median values are equal.

The curve representing this function (Fig. 12) is usually skewed to the right,
going on to infinity, and, for b > 1, reaches zero frequency (touches the life axis)
to the left of the mode, which is the life value where the highest number of failures
occur.

The distribution is said to have a nonzero minimum life if the curve touches
the life axis at a value of life greater than 0. In other words, any specimen from
the population represented by such a distribution will have zero probability of

* This description of the Weibull distribution function, as an addition to ASTM
STP 91-A, was originally prepared by a Task Group in Subcommittee VI on Statistical
Aspects of Fatigue of ASTM Committee E-9 on Fatigue, composed of: C. A. Moyer,
chairman, Physical Laboratories, Timken Roller Bearing Co.; J. J. Bush, General Motors
Research Laboratories; and B. T. Ruley, New Departure Div., General Motors Corp. It
has been revised, prior to publication in its present form, by another Task Group in
Subcommittee VI, composed of: John K. H. Kao, chairman, New York University;
Robert A. Heller, Columbia University; B. T. Ruley, New Departures Div., General
Motors Corp.; J. M. Holt, Applied Research Laboratories, U. S. Steel Corp.; M. P.
Semenek, International Harvester Co.; and G. R. Gohn and Miss M. N. Torrey, Bell
Telephone Laboratories, Inc.

There has been a demand from the roller bearing industry for the inclusion of an
additional section covering the use of the extreme-value distribution originally proposed
for the analysis of fatigue data by W. Weibull (31,32). Since Fisher and Tippett (33) are
often credited with first showing that this distribution was one of three limiting types of
the extreme-value distribution, it is sometimes referred to as "Fisher-Tippett Type III
for smallest values." As pointed out by Freudenthal and Gumbel (34), this distribution
has some theoretical basis, assuming that fatigue failures are examples of extreme values,
that is, they are smallest-strength or weakest-link values. It has also been used by others
in the analysis of life test data.
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TABLE 35.— ORE

F(N) X 100

2
4
5
6
8

10
12
14
15
16
18
20
22
24
25
26
2 8 
30
32
34
35
36
38
4 0 
42
44
45
46.
48
50

)INATE LOCATIO
FAIL!

log 1 - PUt)

0.0088
0.0177
0 0223
0 0269
0 0362
0.0458
0.0555
0.0655
0.0706
0.0757
0.0862
0.0969
0.1079
0.1192
0.1249
0.1308
0 1427
0 1549
0.1675
0.1805
0.1871
0.1938
0.2076
0.2218
0.2366
0.2518
0.2596
0.2676
0.2840
0.3010

NS CORRESPON
]D VALUES.

F(N) X 100

52
54
55
56
58
60
62
63 2
64
65
66
68
70
72
74
75
76
78
80
82 
84
85
86
88
90
92
94
95
96
98

DING TO PER CENT

Iog 1 - F(N)

0 3188
0 3372
0 3468
0 3565
0 3768
0 . 3979
0 4202
0 4341
0 4437
0 4559
0.4685
0.4949
0.5229
0.5528
0 5850
0 6021
0 6198
0 6576
0.6990
0.7447
0.7959
0.8239
0.8539
0 9208

. 1 . 000
1.097
1.222
1.301
1.398
1.699

failure prior to N0 life. Later it will be shown how to test for N0 values greater
than zero, but if it is reasonable to assume N0 = 0, the frequency distribution
function is simplified.

Since the data are usually obtained in an ordered manner in fatigue testing, it
is easy to fit a cumulative distribution function to fatigue life. The cumulative
function for the fraction of population failed prior to life N is

NOTE.—All logs are to the base 10.

FIG. 12.—Typical Weibull Distribution Curves, from Kao (35).
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This function can be transformed into the straight-line relationship

which allows a simple graphical method for fitting the Weibull distribution to the
data and the subsequent graphical estimation of the parameters (b, N0, and Na)
in the formula.
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FIG. 13.—Construction of Weibull Probability Paper from Log-Log Paper.

Construction of Probability Paper

Although Weibull probability paper can be purchased from a source such as
Cornell University, Ithaca, N. Y., Columbia University, New York, N. Y., or
Technical and Engineering Aids for Management, 104 Belrose Ave,, Lowell,
Mass., it can be constructed rather simply from square log-log paper, that is,
log-log paper in which the cycles are the same size in both directions. The paper
is prepared by the marking off on the vertical logarithmic scale of the probability
percentages F(N) corresponding to the values of

given in Table 35. For example, in Fig. 13, the ordinate of the 90 per cent failure
value is 1.000 on the vertical logarithmic scale. Similarly, the ordinate for the 20



TABLE 36.—

Order No., q

No. 1
No 2
No 3
No 4
No 5

No 6
No. 7
No 8
No 9
No 10

No 1
No 12
No 1
No 14
No 15

No 16
No 17
No 18
No 19
No 20

MEAN

1

50.00

-RANI

2

33.33
66.67

C ESTI

3

25.00
50.00
75.00

MATE

4

20.00
40.00
60.00
80.00

3° OF

5

16.67
33.33
50.00
66.67
83.33

THE P

6

14.29
28.57
42.86
57.14
71.43

85.72

ER CE

7

12.50
25.00
37.50
50.00
62.50

75.00
87.50

NT PO

8

11.11
22.22
33.33
44.44
55.56

66.67
77.78
88.89

PULAr

Samp'

9

10.00
20.00
30.00
40.00
50.00

60.00
70.00
80.00
90.00

DION i
e Size,

10

9.09
18.18
27.27
36.36
45.45

54.55
63.64
72.73
81.82
90.91

^AILEI
n.

11

8.33
16.67
25.00
33.33
41.67

50.00
58.33
66.67
75.00
83.33

91.67

) COR]

12

7.69
15.38
23.08
30.77
38.46

46.15
53.85
61.54
69 . 23
76.92

84.62
92.31

RESPO

13

7.14
14.29
21.43
28.57
35.71

42.86
50.00
57.14
64.29
71.43

78.57
85.71
92.86

NDINC

14

6.67
13.33
20.00
26.67
33.33

40.00
46.67
53.33
60.00
66.67

73.33
80.00
86.67
93.33

J TO F

15

6.25
12.50
18.75
25.00
31.25

37.50
43.75
50.00
56.25
62.50

68.75
75.00
81.25
87.50
93.75

AILUE

16

5.88
11 76
17 65
23 53
29.41

35 29
41.18
47.06
52.94
58 82

64.71
70.59
76.47
82.35
88.24

94.12

JE ORI

17

5.56
11 11
16 67
22 22
27.78

33 33
38.89
44.44
50 00
55 56

61.11
66.67
72.22
77.78
83.33

88.89
94.44

DER IJ

18

5.26
10 53
15 79
21 05
26.32

31 58
36.84
42.11
47.37
52 63

57.89
63.16
68.42
73.68
78.95

84.21
89.47
94.74

f SAM!

19

5 00
10 00
15 00
20 00
25 00

30 00
35 00
40 00
45 00
50 00

55 00
60 00
65.00
70 00
75 00

80.00
85.00
90.00
95.00

PLE.

20

4 76
9 52

14 29
19 05
23 81

28 57
33 33
38 10
42 86
47 62

52 38
57 14
61 90
66 67
71 43

76 19
80 95
85.71
90.48
95.24

0 Mean-rank estimates = 100



TABL
1

Plot

Order, q

No. 1. . .
No. 2 . . .
No. 3 . . .
No. 4 . . .
No. 5. . .
No. 6 . . .
No. 7. ..
No. 8. . .

,E 38.— TYPI
PEST DATA,

RUNG
of N Versus 1

Specimen

No. 4
No. 2
No. 5
No. 8
No. 1
No. 7
No. 6
No. 3

CAL FATIGUE
WITHOUT

UTS.
?(N) Nonlinear

Number of Revolu-
tions to Failure

4.0 X
5.0
6.0
7.3
8.0
9.0

10.6
13.0

105

order numbers are given in Table 36 for sample sizes ranging from 1 through 20.
Mean rank, q/(n + 1), is an unbiased estimate of F(N); such estimates are recom-
mended by Gumbel (36) and Weibull (37). Blom(38) suggests modified mean-rank
estimates. For the data given in Table 37 for the sample taken from lot 1, the
abscissa for the first specimen is plotted at its life value of N = 1.1 X 106 revo-
lutions and the ordinate at F(N) X 100 = 16.67, the plotting position for the first
of a sample of five based upon mean ranks given in Table 36.

Estimates of the Distribution Function Parameters:

1. An estimate of the population cumulative distribution that corresponds to
the data plotted in Fig. 13 can be fqund quickly by drawing a line by eye through
the failed points. More refined techniques for calculating this line can be found
by referring to Gumbel (36), Lieblein (39), or Kao (35). It is possible to calculate
this line by the method of least squares, as illustrated in Section V A4 of this
guide. For example:
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per cent failure line is 0.0969 on the logarithmic scale. On such paper, the tangent
of the angle 6 is an estimate of the Weibull "slope," b, for the population line.
The angle 0 may be measured with a protractor, or the slope of the line may be
computed.

Plotting Positions on Probability Paper:

The fatigue data for any one sample are first ordered from shortest to longest
life, each specimen being given an order number, q, from 1 through n. The hori-
zontal plotting position is its individual life value. All runouts are assumed to
have longer lives than the last ordered specimen that failed, but such data are
treated separately below under "Estimates of the Distribution Function Pa-
rameters."

The vertical plotting position of the per cent failed (Fig. 13) is the estimate of
the per cent of the population failed, F(N), based upon the specimen order num-
ber. Mean-rank estimates of the percentages of the population failed at successive

TABLE 37.— TYPICAL FATIGUE
TEST DATA.

Order, q

No. 1 . .
No. 2 . .
No. 3 . .
No. 4. .
No. 5. .
No. 6
No. 7
No 8

Number of Revolutions to Failure

Lot 1

1.1 X 106 2
2.3 3
4.0 5
6.5 8
8.6 11

13
20
23

Lot 2

0 X 106

7
0
0
5
0
0
5

and
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Comparisons using these methods as against the graphic method sho.w,,however,
that the latter is usually adequate for small samples.

2. An estimate of the characteristic life, Na , is obtained from Fig. 13 by reading
off the life value corresponding to the intersection of the fitted line and a hori-
zontal line corresponding to F(N) X 100 = 63.2 per cent.

3. An estimate of the median life is obtained by reading off the life value corre-
sponding to the intersection of the straight line of Fig. 13 and a horizontal line
corresponding to F(N) X 100 = 50 per cent.

6. The skewness of the Weibull distribution varies with the shape parameter,
b; and the Weibull mean, in general, may occur at various per-cent-failed values;

estimate of b

FATIGUE TESTING AND STATISTICAL ANALYSIS or DATA

FIG. 14.—Estimation of Weibull Distribution Function Parameters for Data in Table 38.

4. In Fig. 13, the minimum life, N0 , is assumed to equal zero, since the plot
of the fatigue data is approximately linear. The plotted data from Table 38
result in a line which curves downward (Fig. 14(a)); thus the existence of a finite
minimum life value greater than 0 would be suspected. To find an estimate of
minimum life, N0 : (1) note the life value which the curve approaches asymp-
totically, (2) obtain the quantity N — N0 for each point by subtracting the N0

value from each individual specimen life, and (3) plot this life difference on Weibull
paper versus the same per cent failed values as before. Thus, by trial and error,
the best estimate of N0 will be found so that the data shown in Fig. 14(o) will,
when transformed, plot as a straight line, as shown in Fig. 14(6).

5. The slope parameter, b, is equal to the tangent of the angle 6 shown in Fig.
13. Another estimate of b can be made by computing the tangent of 6 from the
logarithms of the ordinates and abscissas of two widely separate points, NI and
Nz, on the fitted line. Thus
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FIG. 16. — ̂ Estimation of Weibull Distribution Function Parameters for Data in Table 39.

FIG. 15.—Per Cent Failed at Weibull Mean.

TABLE 39.— TYPICAL FATIGUE TEST
DATA, WITH RUNOUTS.

Order, q

No.'l
No. 2
No. 3
No. 4
No. 5
No. 6
No. 7
No. 8

Specimen

No. 2
No. 5
No. 4
No 1
No 6
No 3
No. 7
No. 8

Number of Revolutions
to Failure

1.30 X 106

1.60
1.75
2.10
2.35
2.70
runout
runout



that is, the mean does not coincide with the median. Using the estimated Weibull
slope, b, it is possible to read from Fig. 15 an estimate of the per cent failed at the
Weibull mean and then refer back to the estimated population line on Weibull
probability paper, as in Fig. 13, to read off the estimated mean life from the
curve. Gumbel (36) and Kao (35) give methods for calculating the Weibull mean1

when the characteristic life Na and the slope b are known.
7. For data containing run-out specimens (Table 39), the n' broken specimens

(6 in the example, Fig. 16), out of a total of n specimens tested, are plotted on
probability paper at the mean-rank plotting positions, corresponding to a sample
size n (8 in the example, Fig. 16(a)). The line drawn through these points will
approach a horizontal asymptote, F/racture , which is equal to the ratio of the
first plotting positions corresponding to sample sizes n and n', respectively (Fig.
16(a)).

The parameters of this distribution may be obtained graphically by plotting
only the n' broken specimens at mean-rank plotting positions, corresponding to a
sample size n' versus N — N0 , where N0 is again the estimate of the vertical
asymptote approached by the curve. The slope of the resulting straight line (Fig-
16(6)), tan 6 = b, can be obtained as described in this Section. Na , at the proba-
bility level of 63.2 per cent, is taken directly from the plotted line. The estimated
equation of the probability function for the complete sample of size n will then
become
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where F/ = rf racture .
The curve of Fig. 16(a) may now be replotted by using, as ordinates, Fracture

times the ordinates of the straight line and, as abscissas, N0 plus the abscissas
of the straight line. Note that Na is, in this case, no longer the estimate of the?
characteristic life parameter of the complete distribution, F(N). The value of N
at the 63.2 per cent probability of failure level may be obtained from the plot in
Fig. 16(o).

1 Weibull mean:

where T — the gamma function; and for Weibull variance:




