LIST OF SYMBOLS USED IN THIS VOLUME

Symbol	Definition	Q_B	flow rate of fluid caused by ball
A	area	D	displacement
b	effective length of monomer	R	radius of stator; radius of capillary;
C	concentration	n	radius of cone
c	elastic shear deformation	R_0	root mean square gyration radius of
D	cylinder diameter		the undisturbed macromolecular
D_{p}	degree of polymerization	ъ.	coil
d^{r}	ball diameter	R_1	root mean square gyration radius
e	measure of the inner viscosity of a		of the moving macromolecular
•	macromolecular coil	_	coil
\boldsymbol{F}	force	R_e	Reynold's number
\overline{F}_n	normal force	R_k	radius from center of rotation of
f^n	frequency		concentric cylinders to knife edge
$\overset{\jmath}{G}$	shear rate	r	radius of rotor; radius of ball;
G_m	maximum shear rate		radius of capillary
$\overset{\circlearrowleft_m}{H}$	power	r	mean radius
$\overset{II}{H}_v$	power per unit volume	r_m	distance of monomer from center of
h^{v}	distance; film height		mass of polymer coil
h_0	root mean square end-to-end dis-	S	recoverable shear strain
<i>n</i> ₀	tance of polymer coil at rest	T	absolute temperature, deg Kelvin
h_1	root mean square end-to-end dis-	\overline{t}	mean fluid temperature in capillary
n_1	tance of polymer coil in motion	t_i	capillary inlet temperature
J	radii ratio of inner to outer cylinder	t_0	boundary temperature
k	Boltzmann's constant	t_m	midplane temperature
$\overset{\kappa}{L}$	length of capillary; length of cyl-	Δt	temperature difference
L	inder	v	velocity; ball velocity; peripheral
L_0	equivalent length of conical cyl-		velocity of rotor
. L 0	inder	X	torque
M	molecular weight	x_p	per cent change in viscosity per 100
M	molecular weight of the monomer		psi pressure change across the
112	unit		capillary
M_{v}	viscosity average molecular weight	y_t	per cent change in viscosity per deg
m	mass; kinetic energy constant		Fahr average temperature change
$\stackrel{n}{N}$	revolutions per unit time	α	valency angle between monomers;
N_A	Avogadro's number		change in viscosity caused by
n	refractive index		pressure effects
$\stackrel{n}{\Delta} n$	birefringence	β	viscosity equivalent of the kinetic
$\frac{\Delta n}{P}$	pressure	•	energy correction
$\overline{\overline{P}}$	mean pressure	γ	viscosity change caused by tem-
$\stackrel{\scriptstyle \scriptstyle 1}{P}_n$	normal stress	•	perature effects
$\stackrel{I}{\Delta}\stackrel{n}{P}$	pressure gradient	Δ	viscosity change caused by shear
Q	flow rate	_	dependence
Q_0	flow rate at zero shear stress	e	eccentricity
Q_A	flow rate across an annulus	η	viscosity; viscosity of solution
Y A		" 2	,

Symposium on Non-Newtonian Viscometry

4

$\eta_a = \eta_0$	apparent viscosity viscosity of solvent	au	shearing stress; shearing stress applied to solvent
•		_	maximum shearing stress
η_r	relative viscosity, η/η_0	${ au}_m$	
$oldsymbol{\eta_{sp}}$	specific viscosity, $\eta_r - 1 = (\eta - 1)$	$ au_0$	shearing stress applied to solution
	$\left(oldsymbol{\eta}_{0} ight)/oldsymbol{\eta}_{0}$	$ au_c$	shearing stress used in overcoming
η_{sp}/C	viscosity number		viscous resistance
$m{\eta_{sp}}/C \ [m{\eta}]$	intrinsic viscosity, $\lim \eta_{sp}/C$	φ	angle of rotation around the chemi-
	$c{ ightarrow}0$		cal bond joining monomers; angle
$\boldsymbol{\theta}$	angle cone makes with flat plate		of cone
κ	thermal conductivity	$oldsymbol{\phi}_e$	angular motion of the rotor under
Λ	hydrodynamic resistance coefficient		elastic recoil
λ	heat transfer coefficient	χ	extinction angle
ρ	density	ω	angular velocity