PROGRESS IN FLAW GROWTH AND FRACTURE TOUGHNESS TESTING

STP 536

AGTM AMERICAN SOCIETY FOR TESTING AND MATERIALS

PROGRESS IN FLAW GROWTH AND FRACTURE TOUGHNESS TESTING

Proceedings of the 1972 National Symposium on Fracture Mechanics

A symposium presented by Committee E-24 on Fracture Testing of Metals, AMERICAN SOCIETY FOR TESTING AND MATERIALS Philadelphia, Pa., 28–30 Aug. 1972

ASTM SPECIAL TECHNICAL PUBLICATION 536 J. G. Kaufman, symposium chairman

List price \$33.25 04-536000-30

AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race Street, Philadelphia, Pa. 19103

© by American Society for Testing and Materials 1973 Library of Congress Catalog Card Number: 73-76198

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

> Printed in Baltimore, Md. July 1973

Foreword

The Symposium on Progress in Flaw Growth and Fracture Toughness Testing was presented 28-30 August 1972, in Philadelphia, Pa. and was sponsored by Committee E-24 on Fracture Testing of Metals of the American Society for Testing and Materials. J. G. Kaufman, Aluminum Company of America, presided as the symposium chairman, and the six sessions were presided over by J. L. Swedlow, H. T. Corten, J. E. Srawley, R. H. Heyer, E. T. Wessel, and G. R. Irwin.

Related ASTM Publications

Fracture Toughness Testing at Cryogenic Temperatures, STP 496 (1971), \$5.00, 04-496000-30

Probabilistic Aspects of Fatigue, STP 511 (1972), \$19.75, 04-511000-30

Fracture Toughness, STP 514 (1972), \$18.75, 04-514000-30

Contents

Introduction

Theory and Stress Analysis

Application of Strip Model to Crack Tip Resistance and Crack Closure	
Phenomena-C. L. Ho, O. Buck, and H. L. Marcus	5
Crack Tip Resistance and Closure	6
Experimental Procedure	11
Experimental Results and Conclusions	13
Some Observations on Fracture Under Combined Loading-G. H. Lindsey	22
Correlation of Fracture Criteria	23
Example Plexiglass	26
Summary	31
Interaction of Cracks with Rigid Inclusions in Longitudinal Shear	
Deformation. II. Further Results-G. P. Sendeckyj	32
Crack Between Two Rigid Inclusions	33
Pull-Out of Partially Bonded Fiber	39
Debonding of a Rigid Fiber	40
Discussion	42
Local Stresses Near Deep Surface Flaws Under Cylindrical Bending Fields-	
M. A. Schroedl and C. W. Smith	45
Analytical Considerations	46
The Experiments	51
Results and Discussion	53
Summary and Conclusions	60
Prior to Failure Extension of Flaws in a Rate Sensitive Tresca Solid-	
M. P. Wnuk	64
Quasi-Static Extension of the Crack	65
Subcritical Growth	68
Subcritical Crack Growth	
Threshold for Fatigue Crack Propagation and the Effects of Load Ratio	
and Frequency-R. A. Schmidt and P. C. Paris	79
Results on Frequency Effects	80

1

The Effect of Load Ratio	80
Load Ratio and Crack Closure	81
A Crack Closure Explanation of Data Trends for Load Ratio Effects	83
Direct Experimental Determination of $K_{c\ell}$	86
Conclusions	90
Overload Effects on Subcritical Crack Growth in Austenitic Manganese	
Steel-R. C. Rice and R. I. Stephens	95
Nomenclature	95
Material and Test Procedures	97
Test Results	101
Discussion and Results	108
Conclusions	111
Discussion	113
Effect of Multiple Overloads on Fatigue Crack Propagation in 2024-T3	
Aluminum Alloy-V. W. Trebules, Jr., R. Roberts, and	
R. W. Hertzberg	115
Nomenclature	115
Experimental Procedures	118
Testing Procedure	119
Test Results	120
Summary and Interpretation of the Multiple Overload Curve	
Using Closure Concepts	139
Fatigue-Crack Growth Under Variable-Amplitude Loading in ASTM	
A514-B Steel-J. M. Barsom	147
Material and Experimental Work	149
Results and Discussion	155
General Discussion	161
Summary	162

Temperature and Environment

171

172

174

178

180

Effect of a Loading Sequence on Threshold Stress Intensity Determination—W. C. Harrigan, Jr., D. L. Dull, and L. Raymond Experimental Procedure Results Discussion Conclusions

Fatigue and Corrosion-Fatigue Crack Growth of 4340 Steel at Various	
Yield Strengths-E. J. Imhof and J. M. Barsom	182
Materials and Experimental Work	183
Results and Discussion	192
Summary	204

Fatigue Crack Propagation and Fracture Toughness of 5Ni and 9Ni Steels at Cryogenic Temperatures – R. J. Bucci, B. N. Greene and

at Cryogenic Temperatures-R. J. Bucci, B. N. C	reene and
P. C. Paris	206
Materials	208
Specimens	211
Test Apparatus and Experimental Procedures	212
Experimental Results and Discussion	216
Summary	226

Methods

Some Further Results on J-Integral Analysis and Estimates-J. R. Rice,	
P. C. Paris, and J. G. Merkle	231
The Double Edge Notched Plate in Tension	233
The Internally Notched Plate in Tension	234
The Notched Round Bar in Tension	235
The Remaining Uncracked Ligament Subject to Bending	235
Charpy and "Equivalent Energy" Toughness Measures	237
Estimates of J From Single Points on Load Displacement Records	238
Summary	244
A Comparison of the J-Integral Fracture Criterion with the Equivalent	
Energy Concept-J. A. Begley and J. D. Landes	246
J-Integral	247
The Equivalent Energy Concept	248
$J_{\rm Ic}$ and the Equivalent Energy Procedure in the Linear Elastic	
Range	250
The Lower Bond Equivalent Energy Procedure and Approximate	
J -Solutions	251
J _{Ic} and Equivalent Energy for a General Load Versus Load Point	
Displacement Curve	253
Examination of the Condition for Agreement of J_{1c} and the	
Equivalent Energy Procedure	255
A Graphical Interpretation of the Constant J/\overline{A} Condition	258
Summary and Conclusions	259

Analytical Applications of the J-Integral–J. G. Merkle	264
Nomenclature	264
Current Approaches to the Development of Elastic-Plastic	
Fracture Analysis	267
Discussion and Conclusions	279
Experimental Verification of Lower Bond K_{1c} Values Utilizing the	
Equivalent Energy Concept-C. Buchalet and T. R. Mager	281
Equivalent Energy Method	282
Materials, Specimens, and Test Procedure	285
Method of Analyzing the Test Data	285
Experimental Results	286
Discussion	291
A Method for Measuring K_{Ic} at Very High Strain Rates—D. A. Shockey	
and D. R. Curran	297
A Method for Achieving Very High Crack-Tip Loading Rates	298
Experimental Procedure	300
Results	303
Discussion	306
Summary	309
Influence of Stress Intensity Level During Fatigue Precracking on	
Results of Plane-Strain Fracture Toughness Tests-J. G. Kaufman	
and P. E. Schilling	312
Material	313
Test Procedure	314
Results and Discussion	315
Conclusions	319

Materials

Influence of Sheet Thickness upon the Fracture Resistance of Structural	
Aluminum Alloys–A. M. Sullivan, J. Stoop, and C. N. Freed	323
Experimental Parameters	324
Geometrical Dependencies of K_c	326
Applicability of a Model for the Sheet Thickness Dependency of K_c	329
Thickness Reduction and Crack-Tip Opening	330
Critical Crack Length at Various Levels of Operating Stress	331
Summary	332

Plane-Stress Fracture Toughness and Fatigue-Crack Propagation of	
Aluminum Alloy Wide Panels–D. Y. Wang	334
Test Program	336
Discussion	340
Conclusions	349
Fracture Toughness of Plain and Welded 3-InThick Aluminum Alloy	
Plate-F. G. Nelson and J. G. Kaufman	350
Material	351
Procedure	353
Discussion of Results	357
Summary and Conclusions	374
Dynamic Tear Tests in 3-InThick Aluminum Alloys-R. W. Judy, Jr.,	
and R. J. Goode	377
Materials and Procedures	378
Discussion of Results	380
Conclusions	389
Structure of Polymers and Fatigue Crack Propagation-R. W. Hertzberg,	
J. A. Manson, and W. C. Wu	391
Experimental Procedure	393
Experimental Results and Discussion	394
Conclusions	401
Effects of Strain Gradients on the Gross Strain Crack Tolerance of	
A533-B Steel-P. N. Randall and J. G. Merkle	404
Procedure	405
Experimental Results	411
Discussion	415
Conclusion	419

Applications

Applications of the Compliance Concept in Fracture Mechanics-	
H. Okamura, K. Watanabe, and T. Takano	423
Deformation of a Cracked Member	424
Analysis of Statically Indeterminate Structure Containing a	
Cracked Member	427
Extension to the Multiple Loads	430

x CONTENTS

Analogy by Equivalent Electric Circuit	432
Application to the Vibration of Cracked Member	432
Deformation and Strength of Cracked Column Under Eccentric Load	433
Fatigue Crack Propagation and Final Fracture Under Various	
Constraint Conditions at the Ends	435
Application to the Arrest of Brittle Fracture	436
Conclusion	438
Fracture Mechanics Technology for Optimum Pressure Vessel Design-	
J. G. Bjeletich and T. M. Morton	439
Review of Fracture Mechanics	441
Discussion: Vessel Design Optimization	442
Failure Stress Levels of Flaws in Pressurized Cylinders-	
J. F. Kiefner, W. A. Maxey, R. J. Eiber, and A. R. Duffy	461
Description of the Experiments	462
Analysis of the Experiments	463
Summary	480
Experimentally Determined Shape Factors for Deep Part-Through	
Cracks in a Thick-Walled Pressure Vessel $-R$. W. Derby	482
Procedure	483
Results	484
Discussion	488
Summary and Conclusions	490

