Gase Histories Involving FATIGUE & FRACTURE MEGHANICS

Hudson/Rich, editors

ALT) STP 918

CASE HISTORIES INVOLVING FATIGUE AND FRACTURE MECHANICS

A symposium sponsored by ASTM Committee E-24 on Fracture Testing Charleston, SC, 21–22 March 1985

ASTM SPECIAL TECHNICAL PUBLICATION 918 C. Michael Hudson, NASA-Langley Research Center, and Thomas P. Rich, Bucknell University, editors

ASTM Publication Code Number (PCN) 04-918000-30

1916 Race Street, Philadelphia, PA 19103

Library of Congress Cataloging-in-Publication Data

Case histories involving fatigue and fracture mechanics.

(ASTM special technical publication: 918) Includes bibliographies and indexes. "ASTM publication code number (PCN) 04-918000-30." 1. Metals—Fatigue—Congresses. 2. Fracture mechanics—Congresses. I. Hudson, C. M. II. Rich, Thomas P. III. ASTM Committee E-24 on Fracture Testing. IV. Series. TA460.C334 1986 620.1'126 86-17208 ISBN 0-8031-0485-5

Copyright © by AMERICAN SOCIETY FOR TESTING AND MATERIALS 1986 Library of Congress Catalog Card Number: 86-17208

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

> Printed in Baltimore, MD October 1986

Foreword

The symposium on Case Histories Involving Fatigue and Fracture Mechanics was held 21–22 March 1985 in Charleston, South Carolina. ASTM Committee E-24 on Fracture Testing sponsored the symposium. C. Michael Hudson, NASA-Langley Research Center, and Thomas P. Rich, Bucknell University, served as symposium cochairmen and coeditors of this publication.

Related ASTM Publications

Automated Test Methods for Fracture and Fatigue Crack Growth, STP 877 (1985), 04-877000-30

Fracture Mechanics: Sixteenth Symposium, STP 868 (1985), 04-868000-30

Elastic-Plastic Fracture Test Methods: The User's Experience, STP 856 (1985), 04-856000-30

Fracture Mechanics: Fifteenth Symposium, STP 833 (1984), 04-833000-30

Design of Fatigue and Fracture Resistant Structures, STP 761 (1982), 04-761000-30

A Note of Appreciation to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

ASTM Committee on Publications

ASTM Editorial Staff

Helen M. Hoersch Janet R. Schroeder Kathleen A. Greene Bill Benzing

Contents

Introduction	1
Use of Material Characterization to Complement Fracture Mechanics in the Analysis of Two Pressure Vessels for Further Service in a Hydrogenating High-Temperature	
Process —KLAUS RAHKA	3
Cracking at Nozzle Corners in the Nuclear Pressure Vessel Industry—C. WILLIAM SMITH	31
A Pressure Vessel Hatch Cover Failure: A Design Analysis— MITCHELL P. KAPLAN, TERRENCE WILLIS, AND RALPH L. BARNETT	46
Fracture Analysis of Propane Tank Explosion—HUGH S. PEARSON AND R. G. (JESSE) DOOMAN	65
Analysis of the Unstable Fracture of a Reactor Pressure Tube Using Fracture Toughness Mapping—C. K. (PETER) CHOW AND LEONARD A. SIMPSON	78
Choosing a Steel for Hydroelectric Penstocks —CEDRIC N. REID AND BRIAN L. BAIKIE	102
Applied Fracture Mechanics for Assessing Defect Significance in a Crude Oil Pipeline—CURT CHRISTENSEN AND RICHARD T. HILL	122
Observations, Predictions, and Prevention of Fatigue Cracking in Offshore Structures—HAROLD S. REEMSNYDER	136
Failure Analysis of a Large Wind Tunnel Compressor Blade— ROY W. HAMPTON AND HOWARD G. NELSON	153
Analysis of a Compressor-Wheel Failure—russell c. cipolla, JEFFREY L. GROVER, AND ROGER H. RICHMAN	181
Preventing Fracture By Inspection and Analysis —Allen selz and DAVID B. PETERSON	211

Fatigue Crack Growth Predictions of Welded Aircraft Structures Containing Flaws in the Residual Stress Field— JAMES B. CHANG	226
Fatigue and Fracture Mechanics Analysis of Compression Loaded Aircraft Structure—DANIEL L. RICH, R. E. PINCKERT, AND T. F. CHRISTIAN, JR.	243
Fracture of an Aircraft Horizontal Stabilizer—IAN C. HOWARD	259
Fatigue Life Analysis of Fuel Tank Skins Under Combined Loads- CHARLES R. SAFF AND M. A. FERMAN	277
Aircraft Structural Maintenance Recommendations Based on Fracture Mechanics Analysis—ANTHONY G. DENYER	291
Analysis of Two Metal-Forming Die Failures —THOMAS P. RICH AND JAMES G. ORBISON	311
Analysis of a Failed Saw Arbor—C. KENDALL CLARKE	336
Role of Fracture Mechanics in Assessing the Effect on Fatigue Life of Design Changes in Welded Fabrications —PETER J. TUBBY AND J. GRAHAM WYLDE	344
Fatigue Crack Growth and Crack Arrest in the Nails Used for Intramedullary Fixation of Femur Fractures CLAUS MATTHECK, BERNHARD KNEIFEL, AND PETER MORAWIETZ	361
Failure Analysis of a Total Hip Femoral Component: A Fracture Mechanics Approach—CLARE M. RIMNAC, TIMOTHY M. WRIGHT; DONALD L. BARTEL, AND	
ALBERT H. BURSTEIN The Markham Mine Disaster —Adrian P. A. Demaid and Alan Lawley	377 389
Summary	417
Author Index	423
Subject Index	425

ISBN 0-8031-0485-5