
THE MEASUREMENT AND CORRECTION OF ELECTROLYTE RESISTANCE

ELECTROCHEMICAL TESTS

Scribner/Taylor, editors

45h STP 1056

The Measurement and Correction of Electrolyte Resistance in Electrochemical Tests

L. L. Scribner and S. R. Taylor, editors

Library of Congress Cataloging-in-Publication Data

The Measurement and correction of electrolyte resistance in electrochemical tests / L.L. Scribner and S.R. Taylor, editors. (STP ; 1056) Papers presented at the Symposium on Ohmic Electrolyte Resistance Measurement and Compensation, held at Baltimore, MD, 1988; sponsored by ASTM Committees G-1 on Corrosion of Metals and G1.11 on Electrochemical Measurements in Testing. Includes bibliographical references. ISBN 0-8031-1283-1 1. Electrolytes--Conductivity--Measurement--Congresses. 2. Electric measurements--Congresses. 3. Electric resistance--Measurement--Congresses. I. Scribner, L. L. (Louis L.), 1944-II. Taylor, S. R. (S. Ray), 1953- . III. American Society for Testing and Materials. Committee G-1 on Corrosion of Metals. IV. ASTM Committee G-11 on Electrochemical Measurements in Testing. V. Symposium on Ohmic Electrolyte Resistance Measurement and Compensation (1988: Baltimore, Md.) VI. Series: ASTM special technical paper; 1056. QD565.M43 1990 541.3'72--dc20 89~18322 CIP

Copyright © by American Society for Testing and Materials 1990

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

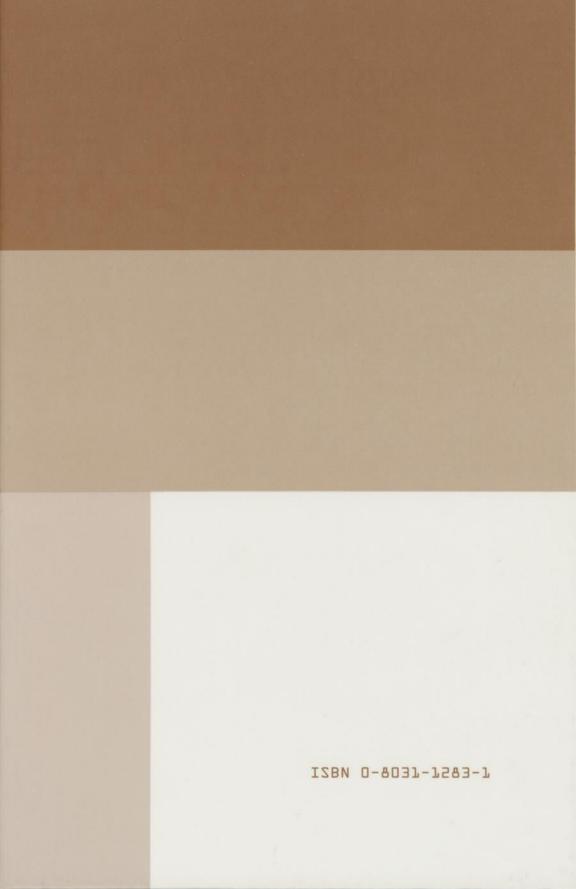
Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM.

Printed in Baltimore, MD January 1990

Foreword


The Symposium on Ohmic Electrolyte Resistance Measurement and Compensation was held at Baltimore, MD on 17 May 1988. ASTM Committees G-1 on Corrosion of Metals and G1.11 on Electrochemical Measurements in Testing sponsored the symposium. L. L. Scribner and S. R. Taylor, University of Virginia, served as chairmen of the symposium and are editors of the resulting publication.

Contents

Overview	1
THEORY	
Influence of Electrolyte Resistance on Electrochemical Measurements and Procedures to Minimize or Compensate for Resistance Errors— HARVEY P. HACK, PATRICK J. MORAN, AND JOHN R. SCULLY	5
IR Drop in Electrochemical Corrosion Studies—Part I: Basic Concepts and Estimates of Possible Measurement Errors—william C. EHRHARDT	27
CRITICAL COMPARISONS OF METHODS	
Theoretical Problems Related to Ohmic Resistance Compensation— KEMAL NISANCIOGLU	61
IR Drop in Electrochemical Corrosion Studies—Part 2: A Multiple Method IR Compensation System—william C. EHRHARDT	78
Determination and Elimination of the Uncompensated Resistance in Low Conductivity Media—FLORIAN MANSFELD, Y. C. CHEN, AND H. SHIH	95
MATHEMATICAL APPROACHES	
Correction of Experimental Data for the Ohmic Potential Drop Corresponding to a Secondary Current Distribution on a Disk Electrode—J. MATTHEW ESTEBAN, MARK LOWRY, AND MARK E. ORAZEM	127
Application of Numerical Simulations to Evaluate Components of Potential Difference in Solution—VINCENT FAROZIC AND GEOFFREY PRENTICE	142
Applications	
Ohmic Compensation in Desert Soil Using a Galvanostatic DC Bridge— DANIEL ABRAHAM, DENNY A. JONES, MICHAEL R. WHITBECK, AND	4
CLINTON M. CASE	157

vi CONTENTS

Measurements of IR-Drop Free Pipe-to-Soil Potentials on Buried Pipelines—	
NEIL G. THOMPSON AND JOHN A. BEAVERS	168
Elimination of IR Error in Measurements of Corrosion in Concrete—	
E. ESCALANTE	180
Comparison of Current Interruption and Electrochemical Impedance Techniques in the Determination of Corrosion Rates of Steel in Concrete—NEAL S.	
BERKE, DING FENG SHEN, AND KATHLEEN M. SUNDBERG	191
Measurement of the Components of the Ohmic Resistance in Lithium/Iodine	
(P2VP) Batteries—C. C. STREINZ, R. G. KELLY, P. J. MORAN, J. JOLSON,	
J. R. WAGGONER, AND S. WICELINSKI	202
The Importance of Ohmic Potential Drop in Crevice Corrosion—	
BARBARA A. SHAW	211
Index	221

