A

TREATISE

ON

INTERNAL NAVIGATION.

```
EXPLAINING THE PRINCIPIES BY WHICH CANALS AND
    THEIR APPENDAGES ARF LAED OUT, CONSTRUC-
            TED AND KEPT IN REPAIR, TOGETHER
            WITHI OTHER INTERESTING AND
                USEFUL MANTERS CONNEC-
                    TED WiTH THE SUB-
                        JECT;
```

COMPILED FROM THE LATEST AND MOST AP PROVED AUTHORITIES:
TO WHICH IS ANNEXED,
THE
REPORT OF ALBERT GALLATIN
ON
ROADSAND C'ANALS.BALLSTON SPA:PRINTED BY U. F. DOUBLEDAY.
used for deaseing the hoop and bas along the botom, and for hatiog the same up to the sufface, when the manat the pole finds that the bag is full, he begins to pull lustead of pushing by the pole ; this is the employment at Woolwichof a great number of convicts, m stead of their being transported Solid matters or rocks when they hoppen to need excavating, below the level that the water can be drawn off to, or the ebb of the tide. seem to require all the skill and resources of the engl. neer.

It may not be uninteresting to the reader, to leam the opinion which was entertained by the great Brindiey, (who is emphatically stiled the father of Baith camels) on the subject of the improvement of river navigations. He was the greatest enthusiast, (says Phillins) in favor of artificial navigations that ever existed. "Having spoken upon various circumstances of rivers before a committee of the House of Commons, in which he sceur. edto treat all sorts of rivers with great contempts 3 member asked him for what purpose he apprehended rivers were created? Mr. Brindley, considering within himself a moment, replied, "to feed navigable canets", see In'and Navigation by J. Phillitls, pages 113-14.

CHAP. XIV.

WATER-CEMENTS. PUZZOLANA. TARAAS. BLACKOXIDE OFIRON. IRON ORES WOOD-ASHES COMPACT BASALT. CENDREE DE TOURNAT. LORIOTMORTAR. NOTE, ON WATER CEMENGS. BLACK OXIDE OF MANGANESE, MATERIALS INTRE UNITEDSTATES.

$A$$S$ the construction of locks sequires the use of mortar or cement, which will set, indurate or harden under water; a short account of Water Cements; may not be improper. Althougha well made mortar, cont.
posed merely of sand and lime, if allowed to dry, becomes impervious to water, yet if the circumstances of the building are such as to render it impracticable to keep out the water, whether fresh or salt, a sufficient length of time, the use of common mortay must be abandoned; for lime and sand, if mixed together in any proporions, and put, while soft, into water, will, in a short time fall to pheces.

Among the nations of antiguty the Fonans appeă: to have been the only people who practised bullding in water, and especitily in the sea, to any great extentThe bay of Bate, Tike of fashonable watering places, was the summer resort of all the weallhy of Rome; who, not content with erecting their villas as near the shore as possible; were accastomed to construct moles, and form smallisiands, in the more shelered parts of the bay, on which, for the sake of the grateful coolness, they built heir summer houses and pavillions. They were enabled to tuild thus securely in the water by the tortunate discovery, at the neighhoring town of Puteoli, of an earthy substance, which, from this circumstance, was called hukits puteolanus, (powder of Putecli)

Puteolan powiter, orasit is nov denominated puzzolana, is a light, parous, friable mineral, of a red colour, and is generally supposed to derive its origin from concreted volcanic ashes, thrown out from Vesuvius, near to whichmountain the town of Puteoli is situated. It seems 10 fonsistof a deruoinous clay, brised and calcined by the force of volenic fire, and when mixed with common mortat, not only enables it to acquire a remarLable hardness in the air, but to become as firm as stone, even under water. The only preparation which puzzo. Lana undergoes, to fit it for use, is that of pounding and sifting, ty which it is reduced to a coarse powder; in this state being horoughly beaten up with lime, either with or without sand, it furms a mass of remarkable tenacity, which speedriy sets under water, and becomes at least as strong as good free-stone.

It has been before observed, that a composition of pure lime and sand alone will not harden under water,
but limes containing a portion of clay possess this moperty in a considerable degree, and are therefore generally used in water building. The cement used by Me. Smeaton, in the construction of the Eddestone lightirotso, was composed of equal parts by measure of slo. Ped Aberthaw lime and puzzolana. The peculiar diff. chities of this undertaking exposed to the utmost vio. lence of the sea, rendered these proportions advisable; bet for works that are less exposed, such as locks and basons for canals, \&c., the quantity of puzzolana may be considenbly diminisbed. A composifion of this kind, which has been found very effectual, is two bushels of slaked Aberthat lime, one bushel of puzzolana, and three of clear samd, the whole being well beaten toge. ther will yield 4.67 cubic feet of cement.

The Dutch have pracused building in water to a greater extent than any other iation of modern Europe; and to them is due the disco yery of a cement admirably well adapted for this purpose, and called tarras or trass. This is nothing more than wakke, or cellular basalt, and is procured chiefly from gockenheim, Frankfort on the Maine, and Andernach, whence it is transported down the Rhine in large quantities to Holland. This substance being, by grinding and sifting, reduced to the consistence of coarse sam, is used in the composition of mortar, with the blve argillaceous lime from the banks of the Scheldt, in the following method.' They take of the quick-lime about the quantity which will be wanted during a week, and spread it in a kind of bason in a stratum of a foot thick and sprinkle it with water. It is then. covered with a stratum of about the same thickness of tartas, and the whole suffered to remain for two or three days, after which it is very well mixed and beaten, and formed into a mass, which is again left for about two days; it is then taken in small quatities, as it is wanted for dally consumption, which are again beaten previous to using. Thus is composed the celebrated taras mortar with which the mounds and other constructions for the purpose of protecting the lowands of Holland against tras sea ate cemoned.

Tarras is frequently used in this country, being imported from Holland for that purpose. The proportions of the materials of the tarras mortar generally used in the construction of the best water works is the same as the Dutch practise. One measure of quicklime, or two measures of slaked lime in dry powder, is mixed with one measure of tarras, and both very well teat together, to the consistence of a paste, using as litthe water as possibie. Another kind, atmost equally good, and considerably cheaper, is made of two measures of staked lime, one of taras, and three of coarse sand; it requires to be beaten a longer time than the foregoing, and produces three meastres and a half of excellemt mortar. Whea the builing is constructed of rough irregular stones, where cavilies and large joints are to be filled up with cement, the pebble mortar may be most advantageously applied; this was a favorite mode of construction among the Romans, and has been used ever since their time in those works in which a large quantity of mortar is required. Pebble mortar will be found of súfficient compactness if composed of two measures of slaked argillaceous lime, half a measure of tarras, or puzzolana, one measure of coarse sand, one of fine sand, and four of small pebbles, screened and wastied.
It is only under water that tarras mortar acquires its proper hardness; for if suffered to dry by exposure to the air, it never sets into a substance so firm as if the same lime had been mixed with good clean common sand, but is very friable and crumbly. Ash mortar is reckoned to be superior for works that are sometimes wet and sometimes dry, but tarras has the advantage when constantly under water. Tarras mortar when kept always wet, and consequently in a state most favorable to its cementing principle throws out a substance something like the concretions in limestone caverns called stalactites, which substance acquires a considerable hardiéss, and in time becomes so exuberant as to de. form the face of the walls.

Although the cellular basalt is the only kind admit. ted into the preparation of Dutch tarras, yet it appears from some good experiments of Morveau on the subject, that the common compact basalt, if previously calcined, will answer nearly the same purpose.

In some parts of the Low Countries coal ashes are substituted for tarras with very good effect; of which the valuable Cendre de Tournay is a striking instance. The deep blue arcillo-ferruginous himestone of the Scheldt is burnt in kilns with a slaty kind of pit-coal that is found in that neighborhood. When the talcination of the lime is completed, the pieces are taken out, and a considerable quantity of dust and small fragments remain at the bottom of the kilo. This refuse consisting of coat ash mixed with about one fouth of lime dust, is called the cendiee, and is made into a mortar with lime in the following method. About a bushel of the materials is put in any suitable vessel, and sprinkled with water just sufficient to slake the lime; another bushel is then treated in the same way, and so on till the yessel is filled In this state it remains some veeks, and may be kept for a much longer time if covered with moist earth. A strong onen trough, containins abous two cubic feet, is flled about two thirds $\frac{\text { fill with the ce- }}{}$ ment in the above state, and by means of a heavy iron peate, suspended at the cnd of an elastic pole, is well beaten for about half gn hous at the end of this time it beromes of the consistene of sof romitr, und then
 drymess of the win. When sufichently dry, it is beaten again for hat an hom re byore, mo the oftenot it is beaten the betce will be the efrent; thre or tous times, howevergare sumient roluce the cement so the cousistence of an miform smouly paste; afer this period it is apt to become refractory oh accoun of the eraporation of its water, as no more of the flatic te dlowed to enter the composition than what was at mist employed to slake the lime. The cement thuspiepar. ed is found to posses the singular alvantage of uniting in a few minutes so firmy to brick or stone, that still
water may be immediately let in upon the work without any inconvenience, and by keeping it dry for 24 hours, it has nothing further to fear from the most rapid current.

A composition very similar to the preceding in mate rials, which are coal cinders and lime, though seldom prepared with any attention, is the blue mortar, commonly used in London for setting the coping of buildings, and other works much exposed to the weather.

Ash mortar is used in some parts of England. It is prepared by slaking two bushels of fresh burnt meagre lime, and mixing it accurately with three bushels of wood ashes : the mass is to lie till it is cold, and is then to be well beaten : in this state it will keep a considerable time without injury, and even with advantage, provided it is thoroughly beaten twice or thrice before it is used.

The scales, or black oxyd of iron, which are detached by hammering red hot iron, and are therefore to be procured at the forges and blacksmith's shops, have been long known as an excellent material in water cements; but we believe that Mr. Smeaton was the first person who made any accurate experiments on their efficacy, compared with other substances. The scales being pulverised and sifted, and incorporated with lime; are found to produce a cement equally powerful with puzzolana mortar, if employed in the same quantity. Induced by the success of these experiments, Mr. Smeaton substituted roasted iron ore for the scales, and found that this also gaye to mortar the property of seto ting under water, it requires, however, to be used in greater proportions than either tarras or puzzolana; two bushels of argillaccous lime, two of iron ore, and one of sand being carefully mixed, produce 3.22 cubic feet of cement fully equal to tarras mortar. If the common white lime is made use of, it will be advisable to employ equal quantities of all the three ingredients.

- With respect to the water used in the preparation of water cements, that of rivers or ponds where it can be had easily, is to be preferred to spring water; but for
works exposed to the action of the sea, such as piers, light-houses, \& c . it is usually more convenient and equally advantageous in other respects to use salt water.

Pumice stone, brick, and tile dust, are also recommended for water cements, but their only advantage seems to be an absorbent quatity, which causes the morter made with them to set sooner, and thercfore acquire a greater haroness in the same time, than mortar composed of sand and lime alone, for they have no power of, hardening under water.

The Loniot motar is a composition which has acquired considerable celebrity in France, and has been employed in some large works. It was invented about 40 yeurs ago by M. Loriot, who imagines that he has discovered the processused by the Romans. The principle of this invention consists in adding to any quantity of mortar made in the usual way with lime and sand, but prepared rather thiner than usual, a certain proportion of quick-lime, in powder. The lime powder being vell incorporated with the mortar, the mass heats, and in a few minutes acquires a consistence, equal to the best Paris plaster, and is as dry at the end of two days, as an ordinary cement after several months. It also, when the ingredients are well proporioned, sets without any cracks. The quantity of lime powder; be added varies from 1-4 to $1-8$ of the other materials, according to the qualities of the lime, too mach bums and dries up the mass, and with too litte it loses its peculiar advantages; thus the proportions, a point of the utmost importance, canorly be determined by experiment. It is its speedy desiccation which rendered the Loriot mortar useful as a water cement, for under water it has only the common properties of a composition of lime and sand of equal solidity; indeed for this purpose various substances, commonly used in cements, are ref commended to be added, such as brick and tile powder, and forge scales. The following is an approved receipt. One meisure of bricks exactly pounded, two measures of fine river sand, old slaked lime in sufficient
quantity to make a mortar in the usual manner and sufficiently liquid to guench the lime powder which is added in about the same guantity as the pulverised brick.

NOTE.

In addition to the waterements above mentioned the compler takes the liberty of extracting the following, on thesubject from The Chemical Catechism, by Samuel Pakk, M L. S. page 425 .

Mix four parts of gray clay, six of the black oxide of manganesc, and ninety of good llaestone reduced to fine powler, then catino the whole to expel the car. bonic acid. When this mixture has been well calcined and cooled, it is to be worked into the consistence of a soft paste with sixty pars of washed sand. If a lump of this cement be thrown into the water it will harden immediately, Such mortar, however, may be procured at a still less expense, by mixing with common quick lime a certain quantity of what are called the white tron ores, espectally sitch as wre poor in tron. These ores are chiefy composed of manganese and carbon ate of lime or chats."

That all be naterials for making the different kiots of water-cements, execpt puzzolang, and perhaps except cellular Gasth, exist in great abondance, in the Unted States, hare camo be adoubt, and with respect to celulat basalt, with which the Dutch make tbe celebrated tarras mortar, it is very probable, considering the exten of our country, and the valieties of our soil, climate and mountams, that this also may be found: but the mineralogy of the United States is yet so imperfectly known, that this, at present, mustiest in conjecture. We have, however, it is believed, all the kids of lime-stone; and the State of New-York can furnish the several varieties, from the pure white lime F the 6ald mountain in Washington County to the blue argilaceous and gray ferruginous kind, commenly known in the country by the name of bastard limestonk. It is hardy worth while to remark, that we have forge scales, or the blackoside of iron in almost any quanti-
ties ; and iron ores exist in such abundance, that it would be superfluous to designate the places where they may be found. Several of the States produce pit coal in considerable varieties; and wood ashes are in great plenty, and of trifling value, in all parts of the country. The writer of this has, in his possession, agood specimen of the black oxide of manganese, brought from Bennington in the State of Vermont, where it is said to exist, in great quantities, and there is but little doubt, that it may also be found in various other parts of the United States. But perhaps the compact basalt would be the cheapest material for a water-cement that could be procured in the State of New-Yonts and we have enough of this material, in one place, to supply the United States. The well known rocks, or cliffs, called the Pallissadoes, which form a part of the west bank of the Hudson river, below the bighlands, are entirely composed lof compact basalt. This, when burnt like lime, and pulverised, communicates to the mortar with which it is mixed, the property of hardening under water. It may be puiverised by the rolling of a heavy circular stone with a horse, in the same manner as tanners grind bark ; or by the simple hydraulic machine, with which gypsum or plaster of Paxis is broken into small fragments before it is ground.

Basaltes or basalt is of a gray, blue, or purplish black color, destitute of lustre or transparency, commonly presenting a texture composed of granular concretions, and is found in large masses of a regular form, generally columnar. According to Klahtroth, it is composed of 44,5 silex, 17 alumine, 20 oxide of iron, 9.5 of lime, 2.6 of soda, and 6 manganese and water, See Chemical Catechism page 438 .

