## hermal Oxidation Stability of

# Aviation Turbine Fuels

Robert N. Hazlett



Monograph 1

#### Thermal Oxidation Stability of Aviation Turbine Fuels

Robert N. Hazlett

ASTM Publication Code Number (PCN) 31-001092-12



ASTM 1916 Race St. Philadelphia, PA 19103

#### Library of Congress Cataloging in Publication Data

Hazlett, Robert N. Thermal oxidation stability of aviation turbine fuels/Robert N. Hazlett. (Monograph: 1) includes bibliographical references and index. ISBN 0-8031-1248-3 1. Airplanes—Fuel. 2. Fuel—Oxidation. 3. Fuel—Thermal properties. I. Title. II. Series: Monograph (American Society for Testing and Materials); 1. TL704.7.H39 1991 629.134'351—dc20 91-36246 CIP

Copyright <sup>©</sup> 1991 AMERICAN SOCIETY FOR TESTING AND MATERIALS, Philadelphia, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

#### **Photocopy Rights**

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by the AMERICAN SOCIETY FOR TESTING AND MATERIALS for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$2.50 per copy, plus \$0.50 per page is paid directly to CCC, 27 Congress St., Salem, MA 01970; (508) 744-3350. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is 0-8031-1248-3/91 \$2.50 + .50.

NOTE: The Society is not responsible, as a body, for the statements and opinions in this publication.

#### Dedication

I dedicate this book to my wife, Margaret, who patiently encouraged me throughout and accepted my long hours at the word processor. I also recognize those who have been positive influences in my professional career: Max Barber, my high school science teacher; Dr. Ruth Thompson, my college chemistry professor; Dr. William McEwen, my thesis advisor for my Ph.D. research; and Dr. Homer Carhart, my long-time mentor and friend at the Naval Research Laboratory.

#### Acknowledgments

The author thanks the following individuals for furnishing copies of figures or tables used in the monograph.

Royce P. Bradley, Wright-Patterson AFB: Figure 1 of Chapter III.

Richard H. Clark, Shell Thornton Research Centre: Figures 6 and 7 of Chapter IV; Figure 6 of Chapter V; Figure 4 of Chapter VI; Figure 1 of Chapter VIII; Figures 2 and 3 of Chapter IX.

T. F. Lyon of General Electric Co.: Figure 2 of Chapter I.

Robert E. Morris of the Naval Research Laboratory: Figure 1 of Chapter IX.

E. M. Nesvig of Erdco Engineering: Figure 1 of Chapter II.

C. J. Nowack of the Naval Air Propulsion Center: Figure 3 of Chapter I; Figures 3 and 4 of Chapter III; Figure 4 of Chapter IV; Table 1 and Figures 3, 7, and 8 of Chapter V.

John E. Schmidt of Boeing Co.: Table 2 and Figure 4 of Chapter I; Figure 3 of Chapter X.

William F. Taylor of Exxon Research and Engineering: Figure 2 of Chapter VI; Figure 3 of Chapter VII.

George R. Wilson of Alcor, Inc.: Figure 2 of Chapter II.

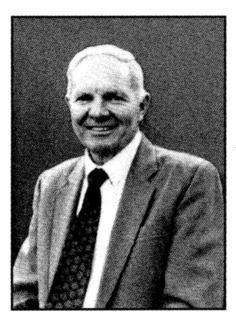
The author thanks Richard H. Clark of Shell Thornton Research Centre, Pierre J. Marteney of United Technologies Research Center, and C. J. Nowack for providing many important documents and papers used in writing the monograph.

The author also thanks the reviewers, whose suggestions significantly improved the readability and technical quality of the monograph. He also thanks his wife Margaret who diligently proofed the text.

#### Contents

| Chapter I—INTRODUCTION                                                | 1   |
|-----------------------------------------------------------------------|-----|
| Previous Reviews of Thermal Oxidation Stability                       | 1   |
| Early Experiences                                                     | 2   |
| Flight Tests                                                          | 3   |
| Recent Problems in Thermal Stability                                  | 4   |
| Fuel Quality and Component Testing                                    | 6   |
| Stress Conditions in Aviation Turbine Engines                         | 8   |
| <b>Chapter II</b> —SPECIFICATION METHODS AND LIMITS                   | 13  |
| CRC/ASTM Coker                                                        | 14  |
| Jet Fuel Thermal Oxidation Tester                                     | 16  |
| Research Coker                                                        | 19  |
| Other Dynamic Testers                                                 | 20  |
| Static Testers                                                        | 21  |
| Chapter III—SIMULATORS AND LARGE-SCALE RIGS                           | 22  |
| Fuel System Simulators                                                | 22  |
| Engine Component Rigs                                                 | 25  |
| Fuel Tank Simulator                                                   | 30  |
| Chapter IV—RESEARCH TESTS AND DEVICES                                 | 32  |
| Single Tube Testers                                                   | 32  |
| Multiple Tube Testers                                                 | 39  |
| JFTOT Modifications                                                   | 42  |
| ASTM Coker Modifications                                              | 43  |
| Static Testers                                                        | 45  |
| Other Devices                                                         | 46  |
| <b>Chapter V</b> —PHYSICAL EFFECTS ON THERMAL STABILITY               | 51  |
| Temperature                                                           | 51  |
| Pressure                                                              | 58  |
| Flow Velocity and Test Duration                                       | 60  |
| Chapter VI—CHEMICAL ASPECTS OF THERMAL STABILITY                      | 72  |
| General Background                                                    | 72  |
| Autoxidation                                                          | 72  |
| Hydrocarbon Structure and Deposition                                  | 75  |
| Involvement of Compounds Containing Hetero Atoms in Deposit Formation | 79  |
| Characteristics of Deposits                                           | 85  |
| Effects of Storage at Low Temperatures                                | 89  |
| Refining Techniques to Improve Thermal Stability                      | 90  |
| Chemical Mechanism in Deposit Formation                               | 91  |
| Summary                                                               | 94  |
| Chapter VII—REDUCTION OF DEPOSIT FORMATION BY REMOVAL OF              |     |
| DISSOLVED OXYGEN                                                      | 99  |
| Deposition in Fuels with Low Oxygen Content                           | 99  |
| Fuel Composition and Deoxygenation                                    | 104 |
| General Comments                                                      | 108 |

| Chapter VIII—METAL EFFECTS ON THERMAL STABILITY<br>Dissolved Metal Effects |     |
|----------------------------------------------------------------------------|-----|
| Sources of Dissolved Metals                                                | 114 |
| Effects from Exposure to Metallic Materials                                | 116 |
| Mechanisms of Metal Action                                                 | 118 |
| <b>Chapter IX</b> —ADDITIVE EFFECTS ON THERMAL OXIDATION STABILITY         | 122 |
| Previous Reviews and Surveys of Additives                                  | 122 |
| Recent Additive Studies                                                    | 122 |
| Chapter X—HIGH TEMPERATURE REQUIREMENTS                                    | 133 |
| Exterior Surface Temperatures                                              | 133 |
| Fuel Temperatures in Commercial Transports                                 | 133 |
| Fuel Temperatures in Military Aircraft                                     | 136 |
| <b>Chapter XI</b> —RESEARCH AND DEVELOPMENT GOALS FOR FUTURE               |     |
| AIRCRAFT FUELS                                                             | 139 |
| Fuels for High-Temperature Applications                                    | 139 |
| Petroleum Supplements and Replacements                                     | 141 |
| <b>Chapter XII</b> —SUMMARY OF THERMAL STABILITY                           | 147 |
| Problems                                                                   | 147 |
| Devices to Examine Thermal Stability                                       | 147 |
| Processes in Thermal Stability                                             | 149 |
| Future Fuels                                                               | 151 |
| Index                                                                      | 153 |


### Glossary of Terms, Acronyms, Symbols, and Standards

| A area                                            |                                                        |
|---------------------------------------------------|--------------------------------------------------------|
| AAFSS advanced aircraft fuel                      | system simulator (United States Air Force)             |
|                                                   | ulsion Laboratory (U.S.)                               |
|                                                   | est apparatus (single tube rig built by United Tech-   |
| AFFB USAF fuel bank sam                           |                                                        |
| AF-SIM see AAFSS                                  |                                                        |
| AKU advanced kinetic unit opment Co.)             | (single tube rig built by Esso Research and Devel-     |
| AN-2 hindered phenol antic                        | oxidant (Ethyl Corp.)                                  |
| AO antioxidant                                    |                                                        |
| ARCO Atlantic-Richfield Co                        |                                                        |
| ASTM D 1655 Specification for Avia                | tion Turbine Fuels (U.S.)                              |
|                                                   | mal Stability of Aviation Turbine Fuels (uses ASTM-    |
|                                                   | ticulate Contaminant in Aviation Turbine Fuels         |
|                                                   | rmal Oxidation Stability of Aviation Turbine Fuels     |
| (JFTOT Procedure)                                 |                                                        |
| at% Atomic percent                                |                                                        |
| AVTUR kerosene-type aviation                      | n turbine fuel (U.K.)                                  |
| B-52 U.S. Air Force jet bo                        | mber                                                   |
| BP British Petroleum, Lt                          |                                                        |
| BuMines Bureau of Mines (U.S                      | S.)                                                    |
| C carbon (chemical elem                           | nent)                                                  |
| CFDC computational fluid d                        | ynamics and chemistry (physicochemical model for       |
| predicting flow and de                            |                                                        |
| CFR Cooperative Fuel Res                          | earch (organization that became the CRC)               |
|                                                   | so used as lubricity improvers)                        |
| COED char oil energy devel<br>FMC Corp., Princeto | opment: a coal liquefaction process developed by n, NJ |
|                                                   | specification testing for thermal stability            |
| CRC Coordinating Researc                          |                                                        |
| DFM diesel fuel marine (U.                        | S. Navy fuel for ships)                                |
| DMD deposit measuring dev<br>search Institute)    | vice (dielectric method developed by Southwest Re-     |
| DOD Department of Defen                           | se (U.S.)                                              |
| DOE Department of Energ                           |                                                        |
| DTS-1 USSR flow rig for the                       |                                                        |
|                                                   | or chemical or physical process                        |
|                                                   | coal liquefaction process                              |
| F-14 U.S. Navy fighter airc                       |                                                        |
| FCA fuel coking apparatus                         |                                                        |

| FDTA        | fuel deposit test apparatus (UTRC multitube rig)                                                                          |
|-------------|---------------------------------------------------------------------------------------------------------------------------|
| FIMS        | field ionization mass spectrometry                                                                                        |
| FOA-3       | fuel oil additive No. 3 (duPont)                                                                                          |
| FOA-310     | fuel oil additive No. 310 (duPont)                                                                                        |
| FSII        | fuel system icing inhibitor                                                                                               |
| GE          | General Electric Co.                                                                                                      |
| GE-4-SIM    | General Electric fuel system simulator                                                                                    |
| GE-NZ       | General Electric fuel nozzle test facility                                                                                |
| GOST-9144   | thermal stability test methods used in USSR                                                                               |
| GOST-11802  | aviation turbine fuel specifications                                                                                      |
| GOST-17751  |                                                                                                                           |
| Н           | hydrogen (chemical element)                                                                                               |
| h           | heat transfer coefficient                                                                                                 |
| "<br>H-COAL | a coal liquefaction process developed by Hydrocarbon Research, Inc.                                                       |
| Hitec 515   | corrosion inhibitor (Ethyl Corporation)                                                                                   |
| HR/MS       | high resolution mass spectrometry                                                                                         |
| HTU         | heat transfer unit (built by Esso Research and Development for CRC SST                                                    |
| mu          | program)                                                                                                                  |
| нх          | heat exchanger                                                                                                            |
| ID          | inside diameter                                                                                                           |
| IFAR        |                                                                                                                           |
| in. Hg      | injector feed-arm rig (Shell Thornton)                                                                                    |
| IONOL       | inches of mercury (measure of pressure)<br>hindered phenol antioxidant (Shell Chemical Co.)                               |
| IP 323      |                                                                                                                           |
|             | Institute of Petroleum (U.K.) designation for Thermal Stability Test Method by JFTOT                                      |
| IR          | chemical analysis by infrared                                                                                             |
| Jet A       | designation for commercial aviation turbine fuel refined to ASTM D 1655 specification (kerosene type)                     |
| Jet A-1     | designation for low freeze point commercial aviation turbine fuel refined<br>to ASTM D 1655 specification (kerosene type) |
| Jet B       | designation for commercial aviation turbine fuel refined to ASTM D 1655<br>specification (wide-cut type)                  |
| JFA-5       | thermal stability additive composed of polymers, organic amines, and amides                                               |
| IFTOT       | (duPont)                                                                                                                  |
| JFTOT       | jet fuel thermal oxidation tester (manufactured by Alcor, Inc. and used<br>in many jet fuel specifications)               |
| JP-4        | U.S. military jet fuel (wide-cut type); specification MIL-T-5624M                                                         |
| JP-5        | U.S. military jet fuel (high flash point kerosene type); specification MIL-<br>T-5624M                                    |
| JP-7        | USAF special jet fuel for high-speed aircraft (low volatility); specification MIL-T-38219B                                |
| JP-8        | U.S. military jet fuel (kerosene type); specification MIL-T-83133B                                                        |
| JPTS        | USAF special jet fuel with high thermal stability; specification MIL-T-25524C                                             |
| kCal/mol    | kilocalories/mole (measure of energy in a chemical or physical process)                                                   |
| kJ/mol      | kilojoules/mole (measure of energy in a chemical or physical process)                                                     |
| Lube        | lubricant                                                                                                                 |
| MDA         | metal deactivator additive                                                                                                |
| MEC         | main engine fuel control                                                                                                  |
| MHR         | mini heated reservoir (used as a preheat device with JFTOT)                                                               |

| MINEX<br>MS<br>NAA<br>NASA<br>NAPC<br>NIPER<br>NRL<br>O | miniature heat exchanger rig developed by General Electric Co.<br>mass spectrometry<br>nitrogen (chemical element)<br>North American Aviation Co.<br>National Aeronautics and Space Administration (U.S.)<br>Naval Air Propulsion Center (U.S.)<br>National Institute for Petroleum and Energy Research (U.S.)<br>Naval Research Laboratory (U.S.)<br>oxygen (chemical element) |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OD<br>PDA                                               | outside diameter                                                                                                                                                                                                                                                                                                                                                                |
| ppb                                                     | phenylene diamine antioxidant<br>parts per billion                                                                                                                                                                                                                                                                                                                              |
| ppm                                                     | parts per million                                                                                                                                                                                                                                                                                                                                                               |
| PRC                                                     | Petroleum Research Centre, Baghdad, Iraq                                                                                                                                                                                                                                                                                                                                        |
| psia                                                    | pounds per square inch absolute (measure of pressure)                                                                                                                                                                                                                                                                                                                           |
| psig                                                    | pounds per square inch gauge (measure of pressure)                                                                                                                                                                                                                                                                                                                              |
| q                                                       | quantity of heat                                                                                                                                                                                                                                                                                                                                                                |
| RAF                                                     | reference aviation fuel from CRC fuel bank                                                                                                                                                                                                                                                                                                                                      |
| RFT                                                     | rectangular flow tester (UTRC)                                                                                                                                                                                                                                                                                                                                                  |
| RP-1, RP-2,                                             | grades of aviation turbine fuel (Peoples Republic of China)                                                                                                                                                                                                                                                                                                                     |
| and RP-3                                                |                                                                                                                                                                                                                                                                                                                                                                                 |
| S<br>SIMS                                               | sulfur (chemical element)                                                                                                                                                                                                                                                                                                                                                       |
| SR-71                                                   | secondary ion mass spectrometry<br>high-speed reconnaissance aircraft (USAF)                                                                                                                                                                                                                                                                                                    |
| SS-71                                                   | stainless steel                                                                                                                                                                                                                                                                                                                                                                 |
| SST                                                     | supersonic transport                                                                                                                                                                                                                                                                                                                                                            |
| STHTR                                                   | single tube heat transfer rig (Shell Thornton)                                                                                                                                                                                                                                                                                                                                  |
| SY2226                                                  | thermal stability test method used in People's Republic of China                                                                                                                                                                                                                                                                                                                |
| T-1, TS-1, T-2                                          | grades of aviation turbine fuel (USSR)                                                                                                                                                                                                                                                                                                                                          |
| and RT                                                  |                                                                                                                                                                                                                                                                                                                                                                                 |
| TDR                                                     | tube deposit rater (used by some organizations to rate deposits on JFTOT heater tubes)                                                                                                                                                                                                                                                                                          |
| TOSCO                                                   | company active in developing oil shale as a source of hydrocarbon fuels                                                                                                                                                                                                                                                                                                         |
| TOPANOL                                                 | hindered phenol antioxidant (ICI, Ltd.)                                                                                                                                                                                                                                                                                                                                         |
| USAF<br>UTRC                                            | United States Air Force                                                                                                                                                                                                                                                                                                                                                         |
| XPS                                                     | United Technologies Research Center<br>X-ray photoelectron spectroscopy (used to analyze surfaces and deposits)                                                                                                                                                                                                                                                                 |
| льэ                                                     | Array photocicciton spectroscopy (used to analyze surfaces and deposits)                                                                                                                                                                                                                                                                                                        |

#### **ASTM Monograph Series**



#### About the Author

Currently retired from the Naval Research Laboratory, Dr. Robert N. Hazlett served there for 36 years. Most of Dr. Hazlett's career was spent in research on liquid fuels-rocket, jet, and diesel. His research on hydrocarbon fuels has dealt with properties, composition, availability, and stability of jet and diesel fuels. Hazlett's work in these areas has been widely published and referenced by others in the field.

The author holds a B.S. degree in chemistry from Sterling College, Kansas and a Ph.D. in organic chemistry from the University of

Kansas. Three Naval Research Laboratory publication awards, the Applied Science Award from the NRL Chapter of Sigma Xi, an Honorary D.Sc. from Sterling College, and the Black Bear Award to an outstanding alumnus of Sterling High School have been bestowed on this distinguished author.

Dr. Hazlett is an active member of ASTM's Committee D-2 on Petroleum Products and Lubricants, the American Chemical Society, the Coordinating Research Council, Sigma Xi, and the International Association for Stability and Handling of Liquid Fuels. The author spent one year (1984-1985) as an exchange scientist at the Materials Research Laboratory, Melbourne, Australia.