

Fatigue Crack Propagation

A symposium presented at the Sixty-ninth Annual Meeting AMERICAN SOCIETY FOR TESTING AND MATERIALS Atlantic City, N. J., 26 June–1 July, 1966

ASTM SPECIAL TECHNICAL PUBLICATION NO. 415

List price \$30.00; 30 per cent discount to members

published by the AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race Street, Philadelphia, Pa. 19103 © BY AMERICAN SOCIETY FOR TESTING AND MATERIALS 1967 Library of Congress Catalog Card Number: 67-14532

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Foreword

The Symposium on Fatigue Crack Propagation was presented in four sessions during the 69th Annual Meeting of the Society, in Atlantic City, N.J., 26 June–1 July, 1966. The symposium was sponsored by Committee E-9 on Fatigue with the cooperation of Committee E-24 on Fracture Testing of Metals. The symposium chairman was J. C. Grosskreutz, Midwest Research Institute. Presiding at the four sessions were Mr. Grosskreutz; H. F. Hardrath, National Aeronautics and Space Administration; G. M. Sinclair, University of Illinois; and Paul C. Paris, Lehigh University.

Related ASTM Publications

- Five Year Bibliography on Fatigue, STP 9BB (1966), \$17.00
- Fatigue Tests of Aircraft Structures: Low-Cycle, Full-Scale, and Helicopters, STP 338 (1963), \$10.50
- Fracture Toughness Testing and Its Applications, STP 381 (1965), \$19.50
- Plain Strain Crack Toughness Testing of High Strength Metallic Materials, STP 410 (1967), \$5.50

Contents

Introduction	1
Fatigue Crack Growth in Structures	
Limitations of Fatigue-Crack Research in the Design of Flight Vehicle Structures—R. H. CHRISTENSEN AND M. B. HARMON	5
Discussion Crack Propagation and Residual Static Strength of Fatigue-Cracked Titanium and Steel Cylinders—w. J. CRICHLOW AND R. H. WELLS	24 25
 Fatigue Crack Propagation in Structures with Simulated Rivet Forces I. E. FIGGE AND J. C. NEWMAN, JR. Low Cycle Fatigue Crack Propagation Resistance of Materials for Large Welded Structures—T. W. CROOKER AND E. A. LANGE Discussion 	71 94 126
Microstructural Aspects of Fatigue Crack Growth	
The Influence of Metallurgical Structure on the Mechanisms of Fatigue Crack Propagation—CAMPBELL LAIRD Discussion	131 169
Effect of Environment on Fatigue Cracks—M. R. ACHTER Discussion	181 203
Fatigue Fracture Surface Appearance—R. W. HERTZBERG	205 224
Microstructures at the Tips of Growing Fatigue Cracks in Aluminum Alloys—J. C. GROSSKREUTZ AND G. G. SHAW	226 242
The Continuum Approach to Fatigue Crack Growth	
Mechanics of Crack Tip Deformation and Extension by Fatigue—J. R. RICE Discussion	247 310
Crack Propagation in Clad 7079-T6 Aluminum Alloy Sheet Under Constant and Random Amplitude Fatigue Loadings. R. SWANSON, F. CICCI, AND W. HOPPE Discussion	312 360
Investigation of Cyclic Crack Growth Transitional Behavior—D. P. WILHEM	363
Discussion Application of a Double Linear Damage Rule to Cumulative Fatigue —S. S. MANSON, J. C. FRECHE, AND C. R. ENSIGN Discussion	380 384 412

Review, Analysis, and Discussion of the Fatigue Crack Growth Proble	m
Significance of Fatigue Cracks in Micro-Range and Macro-Range-	
J. SCHIJVE	15
Discussion 4	58
Fatigue-Crack Propagation in Some Ultrahigh-Strength Steels-R. P.	
WEI, P. M. TALDA, AND CHE-YU LI	60
Discussion 4	80
The Effect of Grain Size on Fatigue Crack Propagation in Copper-	
D. W. HOEPPNER 4	86
Fatigue Crack Propagation Under Program and Random Loads—J. C.	
MCMILLAN AND R. M. N. PELLOUX	05
Discussion 5	33

Summary

Summary	,	537
---------	---	-----

THIS PUBLICATION is one of many issued by the American Society for Testing and Materials in connection with its work of promoting knowledge of the properties of materials and developing standard specifications and tests for materials. Much of the data result from the voluntary contributions of many of the country's leading technical authorities from industry, scientific agencies, and government.

Over the years the Society has published many technical symposiums, reports, and special books. These may consist of a series of technical papers, reports by the ASTM technical committees, or compilations of data developed in special Society groups with many organizations cooperating. A list of ASTM publications and information on the work of the Society will be furnished on request.

