RELAXATION PROPERTIES OF STEELS AND SUPER-STRENGTH ALLOYS AT ELEVATED TEMPERATURES

Data Compiled by and Issued Under the Auspices of

THE DATA AND PUBLICATIONS PANEL of THE ASTM—ASME JOINT COMMITTEE ON EFFECT OF TEMPERATURE ON THE PROPERTIES OF METALS

Prepared for the Panel by JAMES W. FREEMAN AND HOWARD R. VOORHEES

Published by the AMERICAN SOCIETY FOR TESTING MATERIALS 1916 RACE STREET, PHILADELPHIA 3, PA.

RELAXATION PROPERTIES

OF

STEELS AND SUPER-STRENGTH ALLOYS AT ELEVATED TEMPERATURES

Data Compiled by and Issued Under the Auspices of

THE DATA AND PUBLICATIONS PANEL of The ASTM—ASME JOINT COMMITTEE ON

EFFECT OF TEMPERATURE ON THE PROPERTIES OF METALS

Prepared for the Panel by JAMES W. FREEMAN AND HOWARD R. VOORHEES

Special Technical Publication No. 187

Published by the

AMERICAN SOCIETY FOR TESTING MATERIALS 1916 RACE STREET, PHILADELPHIA 3, PA.

FOREWORD

This report is one in a current series prepared under the auspices of the Data and Publications Panel of the ASTM-ASME Joint Committee on Effect of Temperature on the Properties of Metals. Organizations known to have creep-testing facilities were canvassed for relaxation data by a Subcommittee for Survey of Relaxation Data. The data received have been combined with those previously reported under Project 16 of the Joint Committee. Information presented originated with the following organizations, identified on data sheets in the body of this report by the code letters adjacent to names in the list:

- A. American Steel and Wire Division, United States Steel Corp.
- B. Babcock and Wilcox Co. (M.I.T.)
- C. Battelle Memorial Institute
- D. Bethlehem Steel Co.
- E. Chapman Valve Manufacturing Co.
- F. Crane Co.
- G. Elliott Co.
- H. General Electric Co.
- J. International Nickel Co.
- K. Materials Laboratory, Wright Air Development Center (University of Michigan)
- L. Naval Research Laboratory
- M. United Steel Companies, Ltd.
- N. U. S. Naval Engineering Experiment Station
- O. Timken Steel and Tube Co. (University of Michigan)
- P. Westinghouse Electric Corp.

Acknowledgment:

Special thanks are due to the organizations contributing data and to their representatives for taking the time to prepare the data. In particular, credit is due Mr. Ernest L. Robinson for his collection and correlations of relaxation data in prior publications under the auspices of the Joint Committee. A significant amount of the data presented was taken directly from his prior reports.

Membership of the Subcommittee for Survey of Relaxation Data which organized the data collection was as follows:

Sidney Low, *Chairman* Evan A. Davis William C. Stewart E. A. Sticha

The report was prepared under their direction and the authors wish to express appreciation for their advice and counsel. The membership of the parent Data and Publications Panel is as follows:

G. V. Smith, *Chairman* H. L. Burghoff C. L. Clark H. C. Cross R. M. Curran C. T. Evans, Jr. J. W. Freeman G. J. Guarnieri W. L. Havekotte A. J. Herzig A. J. Kanter V. T. Malcolm D. L. Newhouse E. E. Reynolds E. L. Robinson Leo Schapiro J. S. Worth R. D. Wylie

COPYRIGHT, 1956

BY THE

AMERICAN SOCIETY FOR TESTING MATERIALS

PRINTED IN PHILADELPHIA, PA. August, 1956

CONTENTS

1	PAGE
Relaxation Properties of Steels and Super-Strength Alloys at Elevated	_
Temperatures	1
Comparative 1000-Hr Relaxation Strengths for Several Classes of Alloys	7
Approximately Comparative Relaxation Strengths at 1000 Hr	8
Carbon, C-Mo, Cr-Mo, Cr-W, Cr-Mo-W and Ni-Cr-Mo Steels	8
Cr-Mo-V, Cr-W-V and Ni-Cr-Mo-V Steels	8
12Cr Type Steels	8 9
18Cr-8Ni Type Steels and Super-Strength Alloys	9
Approximately Comparative Relaxation Strengths at 10,000 Hr	10
Carbon, C-Mo, Cr-Mo, Cr-W, Cr-Mo-W and Ni-Cr-Mo Steels	10
Cr-Mo-V and Cr-W-V Steels	10
12Cr Type Steels	11
18Cr-8Ni Type Steels and Super-Strength Alloys	11
Carbon Steel	13
Tabular Data	14
Relaxation Strengths of Carbon Steel	14
Carbon Steel Wires-Room Temperature Tests	15
Tabular Data	16
Relaxation of Carbon Steel Wires at Room Temperature	16
C-Mo Steel	17
Tabular Data	18
Relaxation Strengths of C-Mo Steels	19
Influence of Molybdenum Content on the Relaxation Strength of C-Mo Steels at 850 F	20
O.65 to 1.10Cr - 0.10 to 0.30Mo Steels	21
Tabular Data	22
Relaxation Strengths of 0.65 to 1.10Cr-0.10 to 0.30Mo Steels	23
Influence of Initial Stress on the Relaxation Strengths of 0.65 to 1.10Cr-	
0.10 to 0.30Mo Steels at 850 F	24
1.0 to 1.25Cr - 0.5Mo Steels	25
Tabular Data	26
Relaxation Strengths of 1.0 to 1.25Cr - 0.5Mo Steels	27
Influence of Initial Stress on the Relaxation Strengths of 1.0 to 1.25Cr-	
0.5Mo Steels	28
Residual Stress-Time Curves Showing Effect of Initial Stress Level on	
the Relaxation Strengths of 1.25Cr - 0.5Mo Steel at 950 F. (Material 8, Oil Quenched + Tempered).	28
Landara , romboroal,	
1Cr-1Mo, 2Cr-0.5Mo, 1.75Cr-1Mo and Modified Chromium-Molybdenum	
Steels	29
Tabular Data Relaxation Strengths of 1Cr-1Mo, 2Cr-0.5Mo, 1.75Cr-1Mo and Modi-	30
fied Cr-Mo Steels	31

Chromium-Tungsten and Chromium-Molybdenum-Tungsten Steels 1.7Cr-1.7W	33
0.4 to 0.85Cr-0.5Mo-0.8 to 1.2W	
Tabular Data	34
Relaxation Strengths of Cr-Mo and Cr-Mo-W Steels	35
Low-Alloy Steels with 1 to 3 Per Cent Ni	37
Ni-Mo	
Ni-Cr-Mo	
Ni-Cr-Mo-V	
Tabular Data	38
Relaxation Strengths of 1-3 Per Cent Nickel Alloys	39
Molybdenum-Vanadium Steels	41
Tabular Data	42
Relaxation Strengths of Mo-V Steels	43
1Cr-0.5Mo-0.25V Steel-Quenched and Tempered	45
Tabular Data	46
Relaxation Strengths of 1Cr-0.5Mo-0.25V Steel Influence of Initial Stress on Relaxation Strength of 1Cr-0.5Mo-0.25V	47
Steel, Quenched + Tempered Effect of Quenching Temperature on the Relaxation Strength of 1Cr-	48
0.5Mo-0.25V Steel at 900 and 1000 F	49
1Cr-0.5Mo-0.25V Steel	51
Normalized and Tempered	
As-Received	
1Cr-0.5Mo-0.25V + Cb	
Tabular Data	52
Relaxation Strengths of 1Cr-0.5Mo-0.25V Steel, Normalized and Tem-	
pered, As-Received, and Cb Modified	53
Effect of Normalizing Temperature on Relaxation Strength of 1Cr-	-
0.5Mo-0.25V Steel at 1000 F	54
1.25Cr-0.75Si-0.5Mo-0.25V Steel	55
Tabular Data	56
Relaxation Strengths of 1.25Cr-0.75Si-0.5Mo-0.25V Steel	57
0.5Mo-0.25V Steel	58
1.25Cr-0.75Si-0.5Mo-0.75V Steel	59
Tabular Data	60
Relaxation Strengths of 1.25Cr-0.75Si-0.5Mo-0.75V Steel	60
3 Cr-0.5Mo-0.25V and 1.3Cr-2W-0.25V Steels	61
Tabular Data	62
Relaxation Strengths of 3Cr-0.5Mo-0.25V and 1.3Cr-2W-0.25V Steels	63
12Cr Steels	65
12Cr and 12Cr-0.2 to 0.3Mo	
12 to 13Cr-0 to 0.8Ni-0.26 to 0.46Cb	
13Cr-0.7Ni-1Mo-0.2 to 0.8W-0.25V	
Tabular Data	66
Relaxation Strengths of 12Cr, 12Cr-Mo and 13Cr-0.7Ni-1Mo-0.2 to	
0.8W-0.25V Steels	67
Relaxation Strengths of 12 to 13Cr-0 to 0.8Ni-0.26 to 0.46Cb Steels	6 8

-	AGE
12Cr Steels	69
11.5 to 13Cr-2.5 to 3W-0.25V	H 0
Tabular DataRelaxation Strengths of 12Cr-2.75Mo-0.25V and 12Cr-3W-0.25V Steels	70 71
12Cr Steels 12 to 14Cr-2Ni-2.5 to 3W 12Cr-5Co-3W-0.25V 12Cr-5Co-5W-0.25V	73
Tabular DataRelaxation Strengths of 12Cr-2Ni-3W, 12Cr-5Co-3W-0.25V and 12Cr-	74
5Co-5W-0.25V Steels	75
18Cr-8Ni Type Steels 18Cr-8Ni Stainless Steel (Type 304) 18Cr-8Ni + Ti, Al (Stainless "W") 18Cr-8Ni-W	77
Tabular Data Relaxation Strengths of 18Cr-8Ni Type Steels	78 78
Cr-Ni-Fe Super-Strength Alloys	79
16-25-6 HS88 Discaloy A-286 EME Tabular Data Relaxation Strengths of Cr-Ni-Fe Super-Strength Alloys	80 81
Iron-Base Super-Strength Alloys with Cobalt	83
N153 N155 (Including Modifications)	
Tabular Data	84
Relaxation Strengths of Iron-Base Super-Strength Alloys with Cobalt	85
Cobalt-Base Super-Strength Alloys Wrought S-816 Wrought L-605 Cast X-40 Cast 422-19 Cast 6059	87
Tabular Data Relaxation Strengths of Cobalt-Base Super-Strength Alloys	88 89
Nickel-Base Super-Strength Alloys Hastelloy C Inconel X Inconel X-550 Waspaloy	91
Tabular Data Relaxation Strengths of Nickel-Base Super-Strength Alloys	92 93
Cast Irons-Short-Time Tests Tabular Data Short-Time Relaxation Strengths of Cast Irons with an Initial Stress of	95 96
20,000 psi.	97