INDEX

A Bis(3,4-epoxycyclohexylmethyl)adipate, 111 Bronsted acid, 64 Abrasion resistance, 188-190 polymerization, vinyl ethers, 132–134 Acrylated epoxides, 82, 88-92 Butyl rubber, adhesives based on, 168 properties, 92 shelf life, 91 viscosity reduction, 91 Acrylated melamines, 159-160 Acrylated oils, 98-100 Capital investment, 4-5 Acrylates Caprolactone acrylate, 85–86 free-radical polymerization, 83–84 Cationic curable compounds, release grafting to poly(vinyl ethyl ether), 170 coatings, 174 health considerations, 206 Cationic cycloaliphatic epoxide systems, radiation-curable, 158-159 109 - 115stereolithography, 217 epoxidized oils, 115-117 Acrylate compositions, 81–83 formulation, 125 Acylphosphine oxides, 39–40 polymerization mechanism, 117-124 Adhesives, 165-178 added thermal energy, 123 based on butyl rubber, 168 electron beams and epoxide radiation-cured, market, 165-166 Cationic initiation, 35 solvent-based, 165 Cationic photocuring, comparison with free see also Pressure sensitive radical, 109-110 adhesives; Release coatings Cationic photoinitiators, 53–66 Aging properties, optical fibers, 215–216 diazonium salts, 56-57 Aliphatic urethane acrylate, weathering, 197 iodonium salts, 59-64 Americus technology, 56-59 onium salts, 53-54 deficiencies, 58–59 organometallic compounds, 64-66 Anti-adhesive coatings, see Release coatings photosensitization, 66-67 Antifoaming agents, 183 sulfonium salts, 59-64 Aromatic urethane acrylates, 96-97 Cationic polymerization, vinyl ethers, Aryl iodonium salts, 62-63 Arylsulfoniumhexafluorometallic salt Charge-transfer polymerizations, vinyl photoinitiators, 61 ethers, 135-138 Aryl sulfonium salts, 60 Clean Air Act of 1970, 2 ASTM D 785, 190 Clear acrylic coatings, weathering, 197 ASTM E 1818, 19 Clear cationic coating, formulation, 125 Automotive end uses, 211-212 Coatings definition, 3 textured, 194-195 Composite radiation-cured coating systems, Benzoin alkyl ethers, cure rate and, 39 abrasion resistance, 189-190 Conformal coatings, 212-213 Benzoin ethers, cure rate and, 39

240 RADIATION CURING OF COATINGS

Conjugated diene butyl, pressure sensitive Electromagnetic theory, 9 adhesives, 168 Electron beam curing, 15–17 Conveyor system, 20-21 early work, 73–74 Corona discharge treatment, 191 Electron beam energy, 3 Cross-linked density, abrasion resistance and, Electron beams, 7, 17-20 epoxide cure, 123-124 Cross-linking, requirement of, 146 penetration as function of accelerator Crystalline polyester, 148–149 voltage, 17–19 cure, 123-124 Electron beam systems pigmentation, 124 comparison with ultraviolet radiation polyols, 118-122 system, 15–16 water, humidity, and temperature effects, types, 19-20 122 - 123Electron beam technology, in magnetic Curing equipment, 15–30 media, 214 Cycloaliphatic epoxides, 58-59, 62 Electron gun, 18 acidity of compounds, 121 Electronic uses, 212-213 Electrons, 12, 17 Electromagnetic spectrum, 4 D magnitude at various wavelengths, 10–11 de Broglie, 10 radiation, magnitude, 10-12 Diaryliodoniumhexafluoroantimonate Energy consumption, 5 photoinitiators, 62-63 Epoxide cure, electron beams, 123-124 Diaryliodonium tetrakis(pentafluorophenyl) Epoxidized oils, 115-117 borate, 63 Epoxy acrylates, see Acrylated epoxides Diazonium salts, 56-57 3,4-Epoxycyclohexylmethyl-3,4-Difunctional acrylates, properties, 87 epoxycyclohexanecarboxylates, 110, 3,4-Dihydropyran-2-methanol, 133 Diisocyanates, in urethane acrylate Esterified polyol acrylates, 97-98 preparation, 97 Ester vinyl ethers, 139–140 Diluents 3-Ethyl-3-hydroxylmethyl-oxetane, 114 for acrylated epoxides, 92 Excimer radiation, 29 for cationic cycloaliphatic epoxide systems, Exiplex, 43 112-113 Expanding monomers, 183-185 Discharge envelope, 23-24 Divinyl ethers, 140–141 F Donor/acceptor polymerizations, vinyl ethers, 135-138 Fiberboard substrates, ultraviolet radiation-Doping, mercury bulb, 24 curable powder coatings, 151 Dosimetry indicators, 22 Fluorescein, 49 Drying oils, 98 Fluorone photoinitiators, 48 Dual-cure mechanisms, 155–163 Fluorosurfactants, 193 with both acrylate and isocyanate Focused reflector systems, 26 functionality, 158 Food contact applications, radiation-cured free radical/cationic systems, 155–156 coatings, 206 radiation/air-drying cures, 162-163 Free radical/cationic systems, 155–156 radiation/epoxide cure, 161–162 Free radical initiation, 35 radiation/moisture-cure urethane Free radical photocuring, comparison with cures, 160-161 cationic, 109–110 radiation/radiation cure, 162 Free radical photoinitiators, 37–48 radiation/thermal-cures, 156-160 homolytic fragmentation type, 38–41 Dual gloss systems, 186 hydrogen abstraction photoinitiators, 41 - 44E oxygen inhibition, 45-48 photosensitizers, 44–45 Einstein's relativity expression, 9 residual odors, 187-188 Electrical uses, 212-213 visible radiation, 49-50 Electrodeless lamps, 24-26 waterborne systems, 196

Free radical polymerization, vinyl ethers, 130, 132
Free radical systems, 73–100
shrinkage, 100–101
see also Unsaturated polyester/styrene
systems
Fuel cost/availability issues, 2
Future uses, 220–221

G

GAFGARD 233, 189 Glass adhesive, 177–178 Glossary, 233–238 Gloss control, 185–186 Gloves, permeation testing, 205 Government regulations, 2 Graft copolymers, as surfactants, 192–193 Graphic arts, end uses, 216 Grotthus-Draper Law, 7

Н

Health considerations, 203–207
Heat-sensitive substrates, 5
High-solids coatings, 2–3, 5
Homolytic fragmentation type, 38–41
Homopolymerizations, vinyl ethers, 130
Huygens wave theory, 8–9
Hybrid polymerizations, vinyl ethers, 134–135
Hybrid xenon/mercury lamps, 28–29
Hydrogen abstraction photoinitiators, 41–44
2-Hydroxyethyl acrylate, 84–85

I

Inert gases, ionization potential, 27
Initiation, see Cationic initiation; Free radical initiation
Inorganic glass, pigmented and thick section cure, 186
Iodonium salts, 59–64
release coatings, 174–175
Ionizing radiation, 15
Irradiance, 21
Isocyanate-terminated urethane oligomers,

K

Ketosulphone benzophenone, 188

L

Laminated pressure sensitive adhesive labels, 176–177
Latex paints, 1
Lewis acids, 56–57, 65
Light, 29–30
Linerless labels, 175–176
Liquid butadiene/isoprene/styrene block copolymers, pressure sensitive adhesives, 169
Low-pressure lamps, 23

M

Magnetic media, 213–215
Maleimide/acrylate systems, vinyl ethers, 137
Mercury vapor lamps, 22–24
low-pressure, main use, 25
medium-pressure, 26
Metal substrates, ultraviolet radiation-curable powder coatings, 150–151
Migration, 173, 205
Monofunctional acrylates, 83–87
properties, 85
Monomers, polymerization, 35–36
Multifunctional glycidyl ether diluent/flexibilizers, 113
Multiple operations, 5–6

N

Nonionizing radiation, 15 Nonyellowing photoinitiators, 187 Norrish type III reaction, 37–38

Odor, 186-188

O

Oils, epoxidized, 115–117
Oligomeric acrylates, 82, 88–100
Oligomeric vinyl ethers, 138–142
Onium salts, 53–54
photolysis, 65–66
Optical components and materials, 215–216
Optical fibers, thermal and aging properties, 215–216
Organometallic compounds, 64–66
Organo-sulfurous odors, 187
Oxetanes, 113–114
Oxygen inhibition, 45–48
prevention or minimization of effect, 46–48
unsaturated polyester/styrene systems, 77
Oxygen scavengers, 46–47

P	hot melt, 169 laminated labels, 176–177
Paper substrates, moisture content, 122	liquid butadiene/isoprene/styrene block
Particle theory, 8	copolymers, 169
Pentaerythritol tetrakis(mercaptopropionate),	properties, 167
78–79	styrenic block copolymers, 168
Pentaerythritol triacrylate, abrasion	ultraviolet radiation-curable, 171
resistance, 189	Printing inks, 216
Permeation testing, gloves, 205	Productivity, 5
Photochemically induced reactions, 7	Propylene carbonate solvent, 62
Photochemistry, 7–8	Pulsed radiation, 27
Photodecompositions, 37	,
Photoinitiators, 19–20, 37	
homolytic fragmentation, 39–40	R
hydrogen abstraction, 41–44	••
nonyellowing, 187	Radiation, 6-8
visible radiation, 49–50	monitoring exposure, 203
see also Cationic photoinitiators; Free	Radiation/air-drying cures, 162–163
radical photoinitiators	Radiation-cured adhesive market, 165–166
Photons, production, 12	Radiation-cured coatings, food contact
Photosensitization, cationic photoinitiators,	applications, 206
66-67	Radiation-cured cycloaliphatic
Photosensitizers, 44–45	epoxide/polyol blends, tensile and
Pigmentation, cationic cycloaliphatic epoxide	toughness properties, 116-117
systems, 124	Radiation-cured powder coatings,
Planck's theory, 9	advantages, 147
Plasma surface treatment, 191–192	Radiation curing
Plastisols, 156	attributes, 4–6
Polyacrylic esters, combinations, abrasion	definition, 3
resistance, 189	Radiation/epoxide cure, 161–162
Polyene/thiol compositions, 77–81	Radiation polymerization, 35–37
Polyfunctional acrylates, 87–88	Radiation/radiation cure, 162
Polymerization	Radiation sources, 22–23
mechanism, 35–36	ultraviolet, 22–23
cationic cycloaliphatic epoxide systems,	Radiation/thermal-cures, 156–160
117–124	Radiometers, 22
rate of, 39	RadTech website, 205–206
Polymers, surface modification, 191	Reflectors, 21
Polymer systems, ultraviolet radiation-	Regulations, safety, 204
curable powder coatings, 148–149	Release coatings, 172–176
Polyolefin surface, 177	cationic curable compounds, 174
Polyols	iodonium salts, 174–175
in cationic cycloaliphatic epoxide systems,	linerless labels, 175–176
118–122	silicones with functional groups, 173–174
used in coatings, 121	Retrofitting, 6
Polyoxyethylene-modified urethane	Rose bengal, 49–50 Rub-off, 173
acrylates, 195	Rutherford's theory, 10
Polyurethane casting, 172–173	radiction of theory, to
Powder coatings	
advantages, 145 disadvantages, 146	S
see also Ultraviolet radiation-curable	3
	Safety 203_207
powder coatings Pressure sensitive adhesives, 166–172	Safety, 203–207 Scratch resistance, 188–190
forms, 167	Shielding films, 47
grafting acrylates to poly(vinyl ethyl	Shrinkage, free radical systems, 100–101
ether), 170	Silane coupling agents, 190–192
highly flexible urethane acrylate, 170	Silica acrylates, 190
	,,

Silicone coating, 172 Ultraviolet radiation curing, 16-17 Ultraviolet radiation energy, magnitude, 10-12 Silicones with functional groups, release Ultraviolet radiation equipment, safety, 204 coatings, 173-174 Ultraviolet radiation system, comparison with electron beam system, 15-16 release coatings, 174 SILWET L-5410, 193 Ultraviolet radiation systems, 20-26 Slip resistance, 188-190 conveyor system, 20-21 Solvents, amount used, 1-2 irradiance, 21 Space requirements, 6 radiation sources, 22-23 Spectroradiometers, 22 reflectors, 21 Ultraviolet radiation transmissible materials, Stark-Einstein Law, 8 Stereolithography, 216-217 Styrene, as diluent, 75-76 Unsaturated polyester/styrene systems, Styrenic block copolymers, pressure sensitive 74 - 100adhesives, 168 acrylated epoxides, 88–92 Sulfonium salts, 59-64 acrylated oils, 98-100 Surface tension, surfactants, 193-194 acrylate compositions, 81-83 addition of diluents, 75 Surface texturing, 194 Surfactants, 192-194 esterified polyol acrylates, 97-98 Synergists, low molecular weight, 41–43 monofunctional acrylates, 83–87 oligomeric acrylates, 88-100 oxygen inhibition, 77 T polyene/thiol compositions, 77–81 polyfunctional acrylates, 87-88 Tetrafunctional acrylate, properties, 88 urethane acrylates, 92-97 Textured coatings, 194–195 Urethane acrylates, 92–97 Theory, 8-10 aromatic, 96-97 Thermal energy, added, effect, 123 dual-cure systems, 157-158 Thermal processes, 6-7 with free isocyanate functionality, 160 Thermal properties, optical fibers, 215–216 highly flexible, pressure Thermoset powders, 145 sensitive adhesives, 170 cross-linking, 146 hybrid, 96–97 Thick section curing, 195 low or moderate molecular weight, Three-dimensional object curing, 216–217 magnetic media, 214-215 Tischenko reaction, 134 polyoxyethylene-modified, 195 Toxicity, 203 properties, 96 Toxic Substances Control Act, 205 special, 95 Triethylene glycol divinyl ether, 133 Urethane oligomers, isocyanate-terminated, Trifunctional acrylate, properties, 88 Triglycerides, 98 Urethane vinyl ethers, 138-139 2,4,6-Trimethylbenzoyldiphenylphosphine oxide, 39-40 Trimethylene oxide, 113 Vernonia oil, 115-116 U N-Vinyl-2-caprolactam, 86 Vinyl ether-epoxide blends, 141–142 Vinyl ether/maleate alternating copolymer, Ultraviolet radiation, 3, 7 136 Ultraviolet radiation-curable powder Vinyl ethers, 129-142 coatings, 145-152 fiberboard substrates, 151 cationic polymerization, 132-134 metal substrates, 150-151 coatings, advantages, 134-135 polymer systems, 148-149 commercial and developmental, 131 technological benefits, 147 donor/acceptor polymerizations, 135–138 wood substrates, 149-150 free radical polymerization, 130, 132 Ultraviolet radiation-curable pressure homopolymerizations, 130 sensitive adhesives, 171 hybrid polymerizations, 134–135 oligomeric, 138-142 Ultraviolet radiation cured coatings, wood synthesis, 129 coatings, 219

244 RADIATION CURING OF COATINGS

Vinyl ether-silicone blends, 140-141 N-Vinyl-2-pyrrolidone, 86 Visible radiation, 29-30 Visible radiation energy, magnitude, 10-12 Visible radiation photoinitiators, 49-50 Vitreous silica, 24 Volatile organic compounds, 5

Weathering, 196-197 Wood coatings, end uses, 218-219 Wood substrates, ultraviolet radiationcurable powder coatings, 149-150

W

Xenon flash tubes, 28 Xenon lamps, 26-28

Water copolymerization and, 122-123 effects of, 122-123 Water-based systems, 195-196 Waxes, 47

Υ

X

Young's modulus, 158, 161