FRACTURE MECHANICS

Proceedings of the Thirteenth National Symposium on Fracture Mechanics

Richard Roberts, editor

AMERICAN SOCIETY FOR TESTING AND MATERIALS

FRACTURE MECHANICS

Proceedings of the Thirteenth National Symposium on Fracture Mechanics

A symposium sponsored by ASTM Committee E-24 on Fracture Testing of Metals AMERICAN SOCIETY FOR TESTING AND MATERIALS Philadelphia, Pa., 16-18 June 1980

ASTM SPECIAL TECHNICAL PUBLICATION 743
Richard Roberts
Lehigh University
editor

ASTM Publication Code Number (PCN) 04-743000-30

Copyright © by American Society for Testing and Materials 1981 Library of Congress Catalog Card Number: 81-65836

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Printed in Baltimore, Md. November 1981

Foreword

This publication, Fracture Mechanics, contains papers presented at the Thirteenth National Symposium on Fracture Mechanics which was held 16-18 June 1980 at Philadelphia, Pennsylvania. The American Society for Testing and Materials' Committee E-24 on Fracture Testing of Metals sponsored the symposium. Richard Roberts, Lehigh University, presided as symposium chairman and editor of this publication.

Related ASTM Publications

- Tables for Estimating Median Fatigue Limits, STP 731 (1981), \$15.00, 04-731000-30
- Fatigue of Fibrous Composite Materials, STP 723 (1981), \$30.00, 04-723000-23
- Crack Arrest Methodology and Applications, STP 711 (1980), \$44.74, 04-711000-30
- Commercial Opportunities for Advanced Composites, STP 704 (1980), \$13.50, 04-704000-33
- Fracture Mechanics (Twelfth Conference), STP 700 (1980), \$53.25, 04-700000-03
- Nondestructive Evaluation and Flaw Criticality for Composite Materials, STP 696 (1979), \$34.50, 04-696000-33
- Composite Materials: Testing and Design (Fifth Conference), STP 674 (1979), \$52.50, 04-674000-33
- Advanced Composite Materials—Environmental Effects, STP 658 (1978), \$26.00, 04-658000-33
- Fatigue of Filamentary Composite Materials, STP 636 (1977), \$26.50, 04-636000-33
- Composite Materials: Testing and Design (Fourth Conference), STP 617 (1977), \$51.75, 04-617000-33
- Thermal Fatigue of Materials and Components, STP 612 (1976), \$27.00, 04-612000-30

A Note of Appreciation to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is a direct function of their respected opinions. On behalf of ASTM we acknowledge with appreciation their contribution.

ASTM Committee on Publications

Editorial Staff

Jane B. Wheeler, Managing Editor Helen M. Hoersch, Senior Associate Editor Helen P. Mahy, Senior Assistant Editor Allan S. Kleinberg, Assistant Editor

Contents

Introduction	1
Fatigue Crack Growth Behavior and Life Predictions for 2219-T851 Aluminum Subjected to Variable-Amplitude Loadings—	
J. B. CHANG, R. M. ENGLE, AND J. STOLPESTAD	3
Effect of Residual Stress on Fatigue Crack Growth Rate Measurement—R. J. BUCCI	28
Benefits of Overload for Fatigue Cracking at a Notch—	
J. H. UNDERWOOD AND J. A. KAPP	48
A Simple Crack Closure Model for Prediction of Fatigue Crack Growth Rates Under Variable-Amplitude Loading—	
A. U. DE KONING	63
A Model for Representing and Predicting the Influence of Hold Time on Fatigue Crack Growth Behavior at Elevated Temperature—	-
A. SAXENA, R. S. WILLIAMS, AND T. T. SHIH	86
Fatigue Growth of Initially Physically Short Cracks in Notched Aluminum and Steel Plates—B. N. LEIS AND T. P. FORTE	100
Fatigue Fracture Micromechanisms in Poly(Methyl Methacrylate) of Broad Molecular Weight Distribution—J. JANISZEWSKI,	
R. W. HERTZBERG, AND J. A. MANSON	125
Fatigue Crack Growth Rates as a Function of Temperature—	
GÜNTER MARCI	147
A Fracture Mechanics Study of Stress-Corrosion Cracking of Some Austenitic and Austeno-Ferritic Stainless Steels—	
P. BALLADON, J. FREYCENON, AND J. HERITIER	167
An Experimental Investigation of Creep Crack Growth in IN100—	
R. C. DONATH, T. NICHOLAS, AND L. S. FU	186

A Fracture Toughness Correlation Based on Charpy Initiation Energy—D. M. NORRIS, J. E. REAUGH, AND W. L. SERVER	207
Anomaly of Toughness Behavior with Notch-Root Radius— K. P. DATTA AND W. E. WOOD	218
Final Stretch Model of Ductile Fracture—M. P. WNUK AND S. SEDMAK	236
Strength/Toughness Relationship for Interstitially Strengthened AISI 304 Stainless Steels at 4 K Temperature—R. L. TOBLER, D. T. READ, AND R. P. REED	250
Some Problems in the Application of Fracture Mechanics— W. G. CLARK, JR.	269
Fracture Mechanics Technology Applied to Individual Aircraft Tracking—A. G. DENYER	288
Dependence of Strength on Particle Size in Graphite—E. P. KENNEDY AND C. R. KENNEDY	303
Fracture Behavior of a Thick-Section Graphite/Epoxy Composite— T. T. SHIH AND W. A. LOGSDON	316
Fracture Control in Ballistic-Damaged Graphite/Epoxy Wing Structure—J. G. AVERY, S. J. BRADLEY, AND K. M. KING	338
An R-Curve for a Surface Crack in Titanium—J. c. Lewis and G. sines	360
Stress-Intensity Factors for Complete Circumferential Interior Surface Cracks in Hollow Cylinders—D. O. HARRIS AND E. Y. LIM	375
Effect of Higher-Order Stress Terms on Mode-I Caustics in Birefringent Materials—J. w. PHILLIPS AND R. J. SANFORD	387
Influence Functions for Stress-Intensity Factors at a Nozzle Corner— J. HELIOT, R. LABBENS, AND F. ROBISSON	403
Stress-Intensity Distributions for Natural Flaw Shapes Approximating 'Benchmark' Geometries—c. w. smith, w. h. peters, g. c. kirby, and a. andonian	422

Stress-Intensity Factor for a Corner Crack at the Edge of a Hole in a	
Plate—s. s. palusamy and m. raymund	438
Short Rod and Short Bar Fracture Toughness Specimen Geometries and Test Methods for Metallic Materials—L. M. BARKER	456
Estimations on J-Integral and Tearing Modulus T from a Single Specimen Test Record—H. A. ERNST, P. C. PARIS, AND J. D. LANDES	476
A More Basic Approach to the Analysis of Multiple-Specimen R-Curves for Determination of J_c - κ . W. Carlson and J. A. Williams	503
An Experimental Evaluation of Tearing Instability Using the Compact Specimen—J. A. JOYCE AND M. G. VASSILAROS	525
Relationship Between Critical Stretch Zone Width, Crack-Tip Opening Displacement, and Fracture Energy Criterion: Application to SA-516-70 Steel Plates—PHUC NGUYEN-DUY	543
Single-Specimen Tests for J_{lc} Determination—Revisited—G. A. CLARKE	553
Small-Specimen Brittle-Fracture Toughness Testing—w. R. Andrews, v. kumar, and m. m. little	576
Effect of Cyclic Frequency on the Corrosion-Fatigue Crack-Initiation Behavior of ASTM A 517 Grade F Steel—M. E. TAYLOR AND J. M. BARSOM	599
Evaluation of Crack Growth Gages for Service Life Tracking— C. R. SAFF AND D. R. HOLLOWAY	623
Summary	641
Index	647

