
Composite Materials:

Fatigue and Fracture

T. Kevin O'Brien, editor

STP 1110

Composite Materials: Fatigue and Fracture (Third Volume)

T. Kevin O'Brien, editor

ASTM Publication Code Number (PCN) 04-011100-33

ASTM Publication Code Number (PCN): 04-011100-33

ISBN: 0-8031-1419-2 ISSN: 1040-3086

Copyright © 1991 AMERICAN SOCIETY FOR TESTING AND MATERIALS, Philadelphia, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

Photocopy Rights

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by the AMERICAN SOCIETY FOR TESTING AND MATERIALS for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$2.50 per copy, plus \$0.50 per page is paid directly to CCC, 27 Congress St., Salem, MA 01970; (508) 744-3350. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is 0-8031-1419-2/91 \$2.50 + .50.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution to time and effort on behalf of ASTM.

Foreword

This publication, Composite Materials: Fatigue and Fracture (Third Volume) contains papers presented at the Third Symposium on Composite Materials: Fatigue and Fracture, which was held in Lake Buena Vista, Florida, 6–7 November 1989. The symposium was sponsored by Committee D30 on High Modulus Fibers and Their Composites. T. Kevin O'Brien, NASA Langley Research Center, presided as symposium chairman and is editor of this publication.

Contents

Overview	1
MATRIX CRACKING AND DELAMINATION	
Fracture Mechanics Approaches to Transverse Ply Cracking in Composite	
Laminates—LYNN BONIFACE, STEPHEN L. OGIN, AND PAUL A. SMITH	9
Matrix Cracking in Composite Laminates with Resin-Rich Interlaminar Layers-	
LARRY B. ILCEWICZ, ERNEST F. DOST, J. W. Mc COOL, AND D. H. GRANDE	30
The Upper Bounds of Reduced Axial and Shear Moduli in Cross-Ply Laminates with Matrix Cracks—JONG-WON LEE, D. H. ALLEN, AND	
C. E. HARRIS	56
Cooling Rate Effects in Carbon Fiber/PEEK Composites—PETER DAVIES,	
WESLEY J. CANTWELL, PEAN-YUE JAR, HERVÉ RICHARD, DAVID J. NEVILLE,	
AND HANS-HENNING KAUSCH	70
Effects of Moisture Absorption on Edge Delamination, Part I: Analysis of the	
Effects of Nonuniform Moisture Distributions on Strain Energy Release	
Rate—steven J. Hooper, richard f. toubia, and ramaswamy subramanian	89
RAMASWAMI SUDRAMANIAN	89
Effects of Moisture Absorption on Edge Delamination, Part II: An Experimental	
Study of Jet Fuel Absorption on Graphite-Epoxy—STEVEN J. HOOPER,	405
RAMASWAMY SUBRAMANIAN, AND RICHARD F. TOUBIA	107
Effect of Porosity on Flange-Web Corner Strength—HAN-PIN KAN,	
NARAIN M. BHATIA, AND MARY A. MAHLER	126
Interlaminar Fracture Toughness	
Mixed-Mode Fracture in Fiber-Polymer Composite Laminates—sнан наsнемі,	
ANTHONY J. KINLOCH, AND GORDON WILLIAMS	143
Effects of T-Tabs and Large Deflections in Double Cantilever Beam Specimen	
Tests—rajiv a. naik, john h. crews, jr., and kunigal n. shivakumar	169

Experimental Determination of the Mode I Behavior of a Delamination Under Mixed-Mode Loading—Anoush Poursartip and Narine Chinatambi	187
Stabilized End Notched Flexure Test: Characterization of Mode II Interlaminar Crack Growth—KAZURO KAGEYAMA, MASANORI KIKUCHI, AND NOBORU YANAGISAWA	210
Initiation and Growth of Mode II Delamination in Toughened Composites— ALAN J. RUSSELL	226
Evaluation of the Split Cantilever Beam for Mode III Delamination Testing— RODERICK H. MARTIN	243
DELAMINATION ANALYSIS	
Fracture Analysis of Transverse Crack-Tip and Free-Edge Delamination in	
Laminated Composites—ERIAN A. ARMANIOS, P. SRIRAM, AND ASHRAF M. BADIR	269
Combined Effect of Matrix Cracking and Free Edge Delamination— SATISH A. SALPEKAR AND T. KEVIN O'BRIEN	287
Fatigue Delamination Onset Prediction in Unidirectional Tapered Laminates— GRETCHEN BOSTAPH MURRI, SATISH A. SALPEKAR AND T. KEVIN O'BRIEN	312
Delamination Analysis of Tapered Laminated Composites Under Tensile Loading—ERIAN A. ARMANIOS AND LEVEND PARNAS	340
Analysis of Delamination Growth in Compressively Loaded Composite Laminates—MATTHEW D. TRATT	359
A Study of an Implanted Delamination Within a Cylindrical Composite Panel—ANTHONY PALAZOTTO AND BRENDAN WILDER	373
Strength and Impact	
A Comparison of Experimental Observations and Numerical Predictions for the Initiation of Fiber Microbuckling in Notched Composite Laminates—	
E. GAIL GUYNN, WALTER L. BRADLEY, OZDEN O. OCHOA, AND JOHN D. WHITCOMB	393
Three-Dimensional Stress Analysis of Plain Weave Composites— JOHN D. WHITCOMB	417
Compression Testing of Thick-Section Composite Materials—	439

CONTENTS	Vii
Influence of Low-Velocity Impact on Composite Structures—RAM C. MADAN	457
Effects of Stacking Sequence on Impact Damage Resistance and Residual Strength for Quasi-Isotropic Laminates—ernest f. dost, larry b. ilcewicz, William b. avery, and brian r. coxon	476
Relevance of Impacter Shape to Nonvisible Damage and Residual Tensile Strength of a Thick Graphite/Epoxy Laminate—CLARENCE C. POE, JR.	501
Response of Composite Plates to Quasi-Static Impact Events— RONALD B. BUCINELL, RALPH J. NUISMER, AND JIM L. KOURY	528
Compression of Composite Materials: A Review—EUGENE T. CAMPONESCHI, JR.	550
Fatigue and Fracture	
Fatigue Behavior of Continuous Carbon Fiber-Reinforced PEEK—DON C. CURTIS, MARK DAVIES, D. ROY MOORE, AND BARBARA SLATER	581
Damage-Based Notched Strength Modeling: A Summary—MARK T. KORTSCHOT AND PETER W. R. BEAUMONT	596
Fatigue Damage Mechanics of Notched Graphite-Epoxy Laminates— MARK SPEARING, PETER W. R. BEAUMONT, AND MICHAEL F. ASHBY	617
Hole Effect and Compression Fatigue of T300/N5208 Composite Materials— DAWEI LAI AND CLAUDE BATHIAS	638
Effect of Interlaminar Normal Stresses on the Uniaxial Zero-to-Tension Fatigue Behavior of Graphite/Epoxy Tubes—ERHARD KREMPL AND DEUKMAN AN	659
Effects of Notch Geometry and Moisture on Fracture Strength of Carbon/Epoxy and Carbon/Bismaleimide Laminates—JOHN H. UNDERWOOD, IAN A. BURCH, AND SRI BANDYOPADHYAY	667
Fatigue Failure Processes in Aligned Carbon-Epoxy Laminates— MICHAEL R. PIGGOTT AND PATRICK W. K. LAM	686
Fracture of Fibrous Metal MATRIX Composites Containing Discontinuities—YEHIA A. BAHEI-EL-DIN	696
Fatigue Crack Growth in a Unidirectional SCS-6/Ti-15-3 Composite— PETER KANTZOS, JACK TELESMAN, AND LOUIS GHOSN	711
Thermomechanical Fatigue of a Quasi-Isotropic Metal Matrix Composite— BHASKAR S. MAJUMDAR AND GOLAM M. NEWAZ	732
Observations of Fatigue Crack Initiation and Damage Growth in Notched Titanium Matrix Composites—RAJIV A. NAIK AND W. S. JOHNSON	753

viii CONTENTS

Damage and Performance Characterization of ARALL Laminates Subjected to	
Tensile Cylic Loading—ricardo osiroff, wayne w. stinchcomb, and kenneth l. reifsnider	772
Effective Crack Lengths by Compliance Measurement for ARALL-2 Laminates—	
CHRISTOPHER D. WILSON AND DALE D. WILSON	791
An Investigation of the Effects of Temperature on the Impact Behavior and Residual Tensile Strength of an ARamid Aluminum Laminate (ARALL-2 Laminate)—THOMAS C. LEE AND DALE A. WILSON	806
Indexes	
Author Index	823
Subject Index	825