DISCUSSION

- W. G. Wolfer¹—Are the mobile vacancies listed in your tables monovacancies?
- D. G. Doran, R. L. Simons, and W. N. McElroy (authors' closure)—No. The annealing model is based on Johnson's simulation of γ -iron, in which the mobile species are di-, tri-, tetra-, and monovacancies, in decreasing order of mobility (see Ref 12 of paper).
- W. G. Johnston²—A principle aim of ion, proton, and electron simulation experiments is to predict end-of-life swelling in commercial reactors (or a demonstration plant). What damage level in dpa corresponds to presently contemplated target fluences and spectra for such reactors?
- D. G. Doran, R. L. Simons, and W. N. McElroy—Goal fluences differ for different reactor components. The highest goal fluence specified at present for a demonstration plant is $3 \times 10^{23}~(E>0)$ for the fuel cladding. The corresponding exposure for a 300 series stainless steel is ~ 90 dpa.

¹ Advanced Reactor Division, Westinghouse Electric Corporation, Madison, Pa. 15663.

² Research Laboratory, General Electric Company, Schenectady, N. Y. 12301.