Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres

Fourth Volume

Stoltzfus/Benz/Stradling editors

ASTP 1040

STP 1040

Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Fourth Volume

Joel M. Stoltzfus, Frank J. Benz, and Jack S. Stradling, editors

ASTM Publication Code Number (PCN): 04-010400-31 ISBN: 0-8031-1288-2 ISSN: 0899-6652

Copyright © by American Society for Testing and Materials 1989

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM.

FOREWORD

The Fourth International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres was presented at Las Cruces, New Mexico, from April 11 to 13, 1989. The symposium was sponsored by ASTM Committee G-4 on Compatibility and Sensitivity of Materials in Oxygen-Enriched Atmospheres. Joel Stoltzfus, Jack Stradling, and Frank Benz, NASA Johnson Space Center, White Sands Test Facility, served as cochairmen of the symposium.

ACKNOWLEDGMENT

The quality of papers in this publication reflects not only the obvious efforts of the authors but also the unheralded work of the reviewers. Coleman Bryan, Barry Werley, Dr. Robert Lowrie, Kenneth McIlroy, and Joel Stoltzfus acted as review coordinators, enlisting appropriate reviewers and ensuring that reviews were completed properly and submitted on time. The editors also wish to acknowledge Susan Staley, Monica Armata, and Rita Harhut for their efficient and diligent assistance in preparing this document.

> Joel Stoltzfus Jack Stradling Frank Benz

Contents

Overview	1
Development and Evaluation of Test Methods	
An Evaluation of the Liquid Oxygen Mechanical Impact Test—G. E. MOFFETT, N. E. SCHMIDT, M. D. PEDLEY, AND L. J. LINLEY	11
Ignition of Nonmetallic Materials by Impact of High-Pressure Oxygen II: Evaluation of Repeatability of Pneumatic Impact Test—n. e. schmidt, g. e. moffett, m. d. pedley, and l. j. linley	23
The Effects of Testing Methodology on the Promoted Ignition-Combustion Behavior of Carbon Steel and 316L Stainless Steel in Oxygen Gas Mixtures—K. MCILROY AND R. ZAWIERUCHA	38
Promoted Combustion of Nine Structural Metals in High-Pressure Gaseous Oxygen: A Comparison of Ranking Methods—T. A. STEINBERG, M. A. RUCKER, AND H. D. BEESON	54
Modeling and Data Evaluation of the WSTF Frictional Heating Test Facility—w. w. YUEN	76
Ignition and Combustion of Nonmetals	
The Oxygen Sensitivity/Compatibility Ranking of Several Materials by Different Test Methods—B. J. LOCKHART, M.D. HAMPTON, AND C. J. BRYAN	93
Further Studies of Factors That Affect the Spontaneous Ignition Temperatures of Non-Metallic Materials in Gaseous Oxygen—R. K. WHARTON, P. F. NOLAN, AND I. SWINDELLS	106
The Ignition Behavior of Silicon Greases in Oxygen Atmospheres—J. L. CURRIE, R. S. IRANI, AND J. SANDERS	125
Ignition and Combustion of Metals	
Promoted Ignition-Combustion Behavior of Selected Engineering Alloys in Oxygen Gas Mixtures—R. ZAWIERUCHA AND K. MCILROY	145
Fire Spread Rates Along Cylindrical Metal Rods in High-Pressure Oxygen-1. SATO	162
Pressurized Flammability Limits of Metals —J. S. ZABRENSKI, B. L. WERLEY, AND J. W. SLUSSER	178

Combustion of 316 Stainless Steel in High-Pressure Gaseous Oxygen—F. J. BENZ, T. A. STEINBERG, AND D. JANOFF	195
The Pv Product Required for the Frictional Ignition of Alloys —J. M. STOLTZFUS, F. J. BENZ, AND J. HOMA	212
Design, Analysis, and Testing of Oxygen Components	
Design of an Ignition-Resistant, High-Pressure, High-Temperature Oxygen Valve —R. C. CHRISTIANSON AND B. A. PLANTE	227
Promoted Ignition of Oxygen Regulators —B. E. NEWTON, R. K. LANGFORD, AND G. R. MEYER	241
Oxygen Compatibility of Pressure Regulators for Gas Cylinders —H. BARTHÉLÉMY, G. DELODE, AND G. VAGNARD	267
Discussion	286
Ignition of PTFE-Lined Flexible Hoses by Rapid Pressurization with Oxygen—D. JANOFF, L. J. BAMFORD, B. E. NEWTON, AND C. J. BRYAN	288
Evolving Non-Swelling Elastomers for High-Pressure Oxygen Environments —r. s. IRANI, J. L. CURRIE, AND J. SANDERS	309
Surface Modification of Monel K-500 as a Means of Reducing Friction and Wear in High-Pressure Oxygen—M. V. GUNAJI, J. M. STOLTZFUS, L. SCHOENMAN, AND J. KAZAROFF	332
Design, Analysis, and Testing of Oxygen Systems	
Oxygen Fires, Materials Compatibility and System Contaminants —s. A. BARTER AND L. W. HILLEN	349
Evaluating Systems for Oxygen Service Through the Use of Quantitative Fault Tree Analysis—A. J. SANTAY	377
The Oxidant O₂ (Helium) Index of Flammability of Endotracheal Tubes —J. I. SIMPSON, G. L. WOLF, AND G. A. SCHIFF	387
Oxygen-Enriched Fires During Surgery of the Head and Neck —M. E. BRULEY AND C. LAVANCHY	392
Measurements of Oxygen-Enrichment in Foam Insulation for Liquid Nitrogen Pipelines—с. v. ноккамем	406
Author Index	417
Subject Index	419

I2BN 0-9037-7599-5