FRACTURE ANALYSIS

Proceedings of the 1973 National Symposium on Fracture Mechanics, PART II

ASTP 560 AMERICAN SOCIETY FOR TESTING AND MATERIALS

Fracture Analysis

Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II

A symposium sponsored by Committee E-24 on Fracture Testing of Metals, AMERICAN SOCIETY FOR TESTING AND MATERIALS University of Maryland, College Park, Md., 27–29 Aug. 1973

ASTM SPECIAL TECHNICAL PUBLICATION 560 P. C. Paris, chairman of symposium committee G. R. Irwin, general chairman of symposium

List price \$22.75 04-560000-30

AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race Street, Philadelphia, Pa. 19103

©AMERICAN SOCIETY FOR TESTING AND MATERIALS 1974 Library of Congress Catalog Card Number: 74-81155

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

> Printed in Lutherville-Timonium, Md. August 1974

Foreword

The 1973 National Symposium on Fracture Mechanics was held at the University of Maryland Conference Center, College Park, Md., 27–29 Aug. 1973. The symposium was sponsored by the American Society for Testing and Materials through Committee E-24 on Fracture Testing of Metals. Members of the Symposium Subcommittee of Committee E-24 selected papers for the program. Organizational assistance from Don Wisdom and Jane Wheeler at ASTM Headquarters was most helpful. G. R. Irwin, Dept. of Mechanical Engineering, University of Maryland, served as general chairman. Those who served as session chairmen were H. T. Corten, Dept. of Theoretical and Applied Mechanics, University of Illinois; C. M. Carman, Frankford Arsenal; J. R. Rice, Div. of Engineering, Brown University; D. E. McCabe, Research Dept., ARMCO Steel; J. E. Srawley, Fracture Section, Lewis Research Center, NASA; E. T. Wessel, Research and Development Center, Westinghouse Electric Corp.; and E. K. Walker, Lockheed-California Co.

The Proceedings have been divided into two volumes: Part I-Fracture Toughness and Slow-Stable Cracking and Part II-Fracture Analysis.

Related ASTM Publications

- Stress Analysis and Growth of Cracks, STP 513 (1972), \$27.50 04-513000-30
- Fracture Toughness, STP 514 (1972), \$18.75 04-514000-30
- Fracture Toughness Evaluation by R-Curve Methods, STP 527 (1973), \$9.75 04-527000-30
- Progress in Flaw Growth and Fracture Toughness Testing, STP 536 (1973), \$33.25 04-536000-30

Contents

Introduction	1
Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II— M. A. HUSSAIN, S. L. PU, AND J. UNDERWOOD Mapping Function	2 5
Reduction of the Problem to Functional Integral Equations Computations of Energy Release Rate Numerical and Experimental Results	9 16 21
Fracture Under Combined Modes in 4340 Steel—R. C. SHAH Material and Procedures Test Machine and Instrumentation Test Results and Discussion Conclusions	29 31 34 36 51
Crack Approaching a Hole—A. S. KOBAYASHI, B. JOHNSON, AND B. G. WADE Experimental Procedure and Results Analytical Background Results Discussion Conclusions	53 54 57 61 62 67
Influence of Three-Dimensional Effects on the Stress Intensity Factors of Compact Tension Specimens—M. A. SCHROEDL AND C. W. SMITH Nomenclature Analytical Considerations The Experiments Results Discussion Summary	69 69 70 72 74 78 78
K Calibrations for C-Shaped Specimens of Various Geometries— J. H. UNDERWOOD, R. D. SCANLON, AND D. P. KENDALL Nomenclature Collocation Results Data Analysis Procedures K Calibration Results Discussion	81 81 82 85 86 89
A Class of Interface Crack Problems—G. P. SENDECKYJ Basic Equations General Interface Crack Problem Examples Nature of Crack Tip Singularity Crack Tip Stress Intensity Factors Conclusion	92 93 94 95 98 100 103
Stress Analysis of the Compact Specimen Including the Effects of Pin Loading— J. C. NEWMAN, JR. Nomenclature Analysis of the Compact Specimen Results and Discussion Concluding Remarks	105 105 107 110 120

Some Enects of Emperantement Enter in Attended Atoming	122
1 Hild Joio	123
Discussion	127
Summary and Conclusions	132
A Combined Analytical-Experimental Fracture Study—P. C. RICCARDELLA	
	134
Laboratory Experiments	135
Analyses	142
Analytical-Experimental Comparison	150
Recommendations	153
Conclusions	154
An Estimation Model for the Application of the J-Integral-J. A. BEGLEY,	
J. D. LANDES, AND W. K. WILSON	155
The Infinite Plate Problem	156
Crack in a Plastic Zone	159
More Exact Elastic-Plastic Solution for Case of a Hole in a Plate	164
Conclusions	168
Test Results from J-Integral Studies: An Attempt to Establish a J_{Ic} Testing	170
Procedure —J. D. LANDES AND J. A. BEGLEY Test Program	171
Size Effect	181
Fracture Toughness Versus Temperature	182
Tentative J_{Ic} Test Method	182
Conclusions	185
Small-Scale Yielding Analysis of Mixed Mode Plane-Strain Crack Problems-	
C. F. SHIH	187
Dominant Singularity Analysis	191
Perfect Plasticity Solutions at Near-Field	196
The Small-Scale Yielding Problem	202
Conclusions	206
Unimod: An Applications Oriented Finite Element Scheme for the Analysis	
of Fracture Mechanics Problems—PRASAD NAIR AND K. L. REIFSNIDER	211
Unimod—The Technique	212
Results Using Unimod	214
Discussion and Conclusions	224
Application of the J-Integral to Obtain Some Similarity Relations-S. J. CHANG	
AND F. J. WITT	226
Some Preliminary Relations	228
The Similarity Conditions	229
Ilyushin's Principle for Rigidly Plastic Material	231
Singular Solution Near the Crack Tip	233
Elastic-Plastic Problems	234
Discussion	238
Fracture Mechanics Evaluation of the Integrity of an Inlet Nozzle of a	
Pressurized Water Reactor Vessel Following a Postulated Loss of	
Coolant—C. B. BUCHALET	240
Method of Analysis	241
Analysis and Results	248
Conclusions	252
Discussion	253

