erosion, wear, and interfaces with corrosion

STP 567

AMERICAN SOCIETY FOR TESTING AND MATERIALS

EROSION, WEAR, AND INTERFACES WITH CORROSION

A symposium presented at the Seventy-sixth Annual Meeting AMERICAN SOCIETY FOR TESTING AND MATERIALS Philadelphia, Pa. 24-29 June 1973

ASTM SPECIAL TECHNICAL PUBLICATION 567 A. Thiruvengadam, symposium chairman

04-567000-29

© BY AMERICAN SOCIETY FOR TESTING AND MATERIALS 1974 Library of Congress Catalog Card Number: 74-83948

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

> Printed in Philadelphia, Pa. December 1974

Second Printing, Baltimore, Md. May 1982

Foreword

The symposium on Erosion, Wear, and Interfaces with Corrosion was presented at the Seventy-sixth Annual Meeting of the American Society for Testing and Materials held in Philadelphia, Pa., 24-29 June 1973. Committee G-2 on Erosion and Wear sponsored the symposium. A. Thiruvengadam, The Catholic University of America, presided as symposium chairman.

Related ASTM Publications

Evaluation of Wear Testing, STP 446 (1969) (04-446000-23)

Characterization and Determination of Erosion Resistance, STP 474 (1970) (04-474000-29)

Localized Corrosion—Cause of Metal Failure, STP 516 (1972) (04-516000-27)

Contents

Introduction 1 Corrosion, Wear, and Erosion - An Ancient Art and a Modern Science — D. H. KALLAS 5 Historical Review 7 9 State of the Art: Corrosion Interface with Erosion and Wear Future Research and Development 12 Impact on Quality of Life 13 Erosion-Corrosion of Finned Heat Exchanger Tubes --- J. M. A. VAN DER HORST AND C. R. SLOAN 18 Temperature 24 Corrosion 26 Gas Velocity 27 Synergism of Velocity and Corrosion 28 Conclusion 28 Cavitation Erosion – Corrosion Modeling – TERENCE MCGUINNESS AND A. THIRUVENGADAM 30 Experimental Apparatus and Procedures 34 **Results and Discussions** 38 A Mechanism Which Explains a Few Observations Peculiar to Corrosive Environments 45 Conclusions 48 Discussion 51 Applied Cavitation Erosion Testing — J. W. TICHLER, A. W. J. DE GEE, AND H. C. VAN ELST 56 Resistance Against Uniform Material Removal 58 Discussion 61 Pit Formation 67 Conclusions 70 Nomenclature for Appendix 71 Dependence of R_r on Material Properties 72 Discussion 75

Cavitation-Induced Deformation of Aluminum - B. VYAS AND	
C. M. PREECE	77
Experimental Procedure	78
Results	79
Discussion	94
Conclusions	99
Discussion	102
A Model for Rain Erosion of Homogeneous Materials G. S.	
SPRINGER AND C. B. BAXI	106
The Problem	107
Incubation Period, n_i	110
Rate of Mass Removal, a	115
Total Mass Loss	118
Discussion	125
Influence of Physical Properties of the Liquid on the Erosion of	
Solids — M. C. ROCHESTER AND J. H. BRUNTON	128
Experimental Techniques	129
Results and Discussion	134
Impact Pressure Experiments	140
Conclusion	146
Discussion	148
Effects of Cavitation on Materials in Field and Laboratory Con-	
ditions — KAZIMIERZ STELLER, TADEUSZ KRZYSZTOFOWICZ,	
AND ZDZISLAW REYMANN	152
Investigations and Test Rigs	153
Geometric Structure of Surface Damage	154
Damage Rate	159
Metallographic Examination	159
Microhardness	168
Conclusions	168
Studies on Cavitation Damages - F. ERDMANN-JESNITZER AND	
H. LOUIS	171
Test Equipment	172
Measurements of Cavitation Erosion	175
Materials and Test Procedure	178
Results	180
Conclusions	193
Discussion	196

Liquid Impact Behavior of Various Nonmetallic Materials - F. G.	
HAMMITT, E. E. TIMM, J. B. HWANG, AND Y. C. HUANG	197
Experimental Results Obtained	199
Conclusions	217
Discussion	218

Influence of Velocity, Impingement Angle, Heating, and Aerody-	
namic Shock Layers on Erosion of Materials at Velocities	
of 5500 ft/s (1700 m/s)—G. F. SCHMITT, JR., W. G. REINECKE,	
AND G. D. WALDMAN	219
Erosion Rate-Velocity Impingement Angle Dependence	219
Influence of Materials Construction Variables	224
Shock Layer Effects on Droplets and Their Resulting Influence	
on Materials Erosion	225
Drop Breakup	225
Drop Deceleration and Deflection	228
Water Layer	232
Drop Deformation	232
Combined Deformation and Breakup	235

Effects of Fatigue and Dynamic Recovery on Rain Erosion — A. F.	
CONN AND S. L. RUDY	239
Dynamic Property Measurements	241
Correlation of Impact Stress Predictions with Rocket Sled	
Erosion Data	241
Multiple Impact Observations	245
Dynamic Recovery Rate	255
Discussion	256
Conclusions	258
Discussion	261

Wear Characteristics of Modified Plasma-Deposited Aluminum	
Bronze — R. C. TUCKER, JR.	270
Experimental Procedure	271
Materials	272
Wear Test Results	278
Miscellaneous Additions	292
Friction Data	292
Conclusions	292

Erosion of Fused Silica by Glass Beads — W. F. ADLER	294
Experimental Procedure	295
Erosion Mechanisms in Fused Silica	2 9 9
Discussion	310
Conclusions	313
Discussion	315

A New Method for Testing Brake Lining Materials — A. BEGEL-	-
INGER AND A. W. J. DE GEE	316
Method	318
Materials	322
Experimental Procedure	322
Results	323
Summary and Conclusions	331
Calculation of Rate of Heating Up of Lining Specimens	333
Discussion	335