
Testing Technology of METAL MATRIX COMPOSITES

STP 964

Testing Technology of Metal Matrix Composites

Peter R. DiGiovanni and Norman Ray Adsit, editors

ASTM 1916 Race Street Philadelphia, PA 19103

Library of Congress Cataloging-in-Publication Data

Testing technology of metal matrix composites / Peter R. DiGiovanni and Norman Ray Adsit, editors.

(STP ; 964)

"The symposium on Testing Technology of Metal Matrix Composites was held 18–20 November 1985 in Nashville, Tennessee. ASTM Committee

D-30 on High Modulus Fibers and Their Composites sponsored the symposium"—Foreword.

"ASTM publication code number (PCN) 04-964000-33." Includes bibliographies and index.

ISBN 0-8031-0967-9

1. Metallic composites—Testing—Congresses. I. DiGiovanni, Peter R. II. Adsit, N. R. III. ASTM Committee D-30 on High Modulus Fibers and Their Composites. IV. Series: ASTM special technical publication; 964. TA481.T48 1988 620.1'18'0287—dc19 88-15451 CIP

Copyright © by American Society for Testing and Materials 1988

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM.

Printed in West Hanover, MA September 1988

Foreword

The symposium on Testing Technology of Metal Matrix Composites was held 18–20 November 1985 in Nashville, Tennessee. ASTM Committee D-30 on High Modulus Fibers and Their Composites sponsored the symposium. Peter R. DiGiovanni, Raytheon Company, and Norman Ray Adsit, Rohr Industries, served as symposium cochairmen and coeditors of this publication.

Contents

Overview	ix
Special Topics	
Thermal-Mechanical Fatigue Test Apparatus for Metal Matrix Composites and Joint Attachments—leonard J. westfall and donald w. petrasek	3
Compressive Properties and Laser Absorptivity of Unidirectional Metal Matrix Composites—dick J. Chang, Gary L. Steckel, William D. Hanna, and Francisco izaquirre	18
Mechanical Behavior of Three-Dimensional Braided Metal Matrix Composites— azar P. Majidi, Jenn-Ming Yang, and TSU-Wei CHOU	31
An Evaluation of the Failure Behavior of 3-D Braided FP/Aluminum-Lithium Composites Under Static and Dynamic Blanking—FRANK KO, ALI RAZAVI, AND H. C. ROGERS	48
Factors Affecting the Determination of Thermophysical Properties of Metal Matrix Composites—ronald p. tye and stephen e. smith	65
Pressure Dependence of the Elastic Constants of Silicon Carbide/2014 Aluminum Composite—dattatraya p. dandekar, j. frankel, and william j. korman	79
THEORETICAL CONSIDERATIONS	
Micromechanical Modeling of Yielding and Crack Propagation in Unidirectio Metal Matrix Composites—donald F. adams	nal 93
Statistical Strength Comparison of Metal-Matrix and Polymeric-Matrix Composites—edward m. wu and s. c. chou	104
Minimechanics Analysis and Testing of Short Fiber Composites: Experimental Methods and Results—jonathan awerbuch, jonathan goering, and kent buesking	121
Minimechanics Analysis and Testing of Short Fiber Composites: Analytical Model and Data Correlation—Jonathan Goering, kent Buesking, and Jonathan AwerBuch	143

A Unique Set of Micromechanics Equations for High-Temperature Metal Matrix	
Composites —dale a. hopkins and christos c. chamis Discussion	
Thermoviscoplastic Nonlinear Constitutive Relationships for Structural Analysis of High-Temperature Metal Matrix Composites—christos c. chamis and dale A. HOPKINS	
Discussion	
Development of Design Allowables for Metal Matrix Materials— CLAYTON L. HARMSWORTH	
Nondestructive Evaluation and Physical Tests	
Anelastic and Elastic Measurements in Aluminum Metal Matrix	
Composites—alan wolfenden, Mahmond R. Harmouche, and steven v. haves	
Noncontact Ultrasonic Evaluation of Metal Matrix Composite Plates and Tubes— ROBERT W. REED	
Nondestructive Evaluation of Fiber FP Reinforced Metal Matrix Composites— JOYCE E. WIDRIG, DUNCAN D. MCCABE, AND RALPH L. CONNER	
Thermal Expansion Measurement of Metal Matrix Composites—stephen S. tompkins and gregory A. dries	
Alternative Methods for the Determination of Shear Modulus in a Composite Material—craig M. Browne	
Fracture Behavior and Nondestructive Evaluation	
Fracture Toughness of Thin-Walled Cylinders Fabricated from Discontinuous Silicon Carbide Whiskers/Aluminum Metal Matrix	
Composites —louis raymond and james a. Jennings	
Deformation and Failure Characteristics of Center-Notched Unidirectional	
Boron/Aluminum at Room and Elevated Temperatures	
Mechanical Behavior of Silicon Carbide/2014 Aluminum Composite shun-chin chou, john L. green, and ronald a. swanson	
Mechanical Test Methods and Material Characterization	
Compressive Testing of Metal Matrix Composites—wayne m. bethoney, John nunes, and James A. kidd	
Elevated Temperature Testing of Metal Matrix Composites Under Rapid	
Heating Conditions—robert S. FRANKLE AND JAY G. BAETZ	

Short-Term High-Temperature Properties of Reinforced Metal Matrix	
Composites —peter L. Boland, peter R. Digiovanni, and larry franceschi	340
Ultrasonic Inspection of Silicon Carbide Reinforced Aluminum Metal Matrix Composite Billets and Secondary Fabricated Products—philip L. Blue	376
Influence of Heat Treatments and Working on Mechanical Properties of Silicon	
Carbide Reinforced Aluminum Alloys —J. Heritier, P. Balladon, J. Rambaud, F. CHEVET, AND M. DE COQUEREAUMONT	383
Characterization of Thin-Wall Graphite/Metal Pultruded Tubing— ROBERT B. FRANCINI	396
On the Longitudinal and Transverse Tensile Strength and Work of Fracture of a Continuous Fiber Metal Matrix Composite Subjected to Thermal	
Exposure—T. KYONO, I. W. HALL, AND M. TAYA	409
Summary	433
Author Index	435
Subject Index	437

Overview

While the use of Metal Matrix Composites (MMCs) has increased significantly in recent years and there are many future applications, standard test procedures and an understanding of the failure mechanisms have not kept pace. This symposium and the resulting book is a first attempt to address this specific issue.

The keynote address given at the symposium by Jerome Persh, of the Office of the Undersecretary of Defense for Research and Engineering, gave a clear prospective of the need and the importance of MMCs. Mr. Persh dealt with the need to have standard methods of evaluating competing systems so that one can arrive at the system with the most appropriate material.

A total of forty-one papers were initially scheduled for presentation. Eleven had to be cancelled and two more were not included in this book. The resulting twenty-eight papers are divided topically into:

- 1. Special Topics (Including High Temperature)
- 2. Theoretical Considerations
- 3. Nondestructive Evaluation and Physical Tests
- 4. Fracture Behavior and Nondestructive Evaluation
- 5. Mechanical Test Methods and Material Characterization

Work included in this volume covers material systems from the continuous silicon carbon/ titanium system to the particulate reinforced aluminum system. The form of the material varied from precast block to braided pieces. While the end applications of these systems vary, the need to obtain accurate and reliable test data does not vary. Tests and test methods are given for elevated temperature tests, dynamic modulus tests, coefficient of expansion tests, compression and buckling tests, among others. In all cases there is a need for an evaluation of the material before the destructive tests are conducted, that is, a need for nondestructive evaluation.

N. R. Adsit

Rohr Industries, Chula Vista, Ca 92012; symposium co-chairman and co-editor.

ISBN 0-8031-0967-9