APPENDIX

Sieve De	esignation	Nominal	Nominal
Standard ^b	Alternative	- Sieve Opening,	Wire Diameter.
orandura	. monutive	in.c	mma
(1)	(2)	(3)	(4)
125 mm	5 in.	5	8.0
106 mm	4.24 in.	4.24	6.40
100 mm ^d	4 in d	4	6.30
90 mm	$3^{1/2}$ in.	3.5	6.08
75 mm	3 in.	3	5.80
63 mm	$2^{1/2}$ in.	2.5	5.50
53 mm	2.12 in,	2.12	5.15
50 mm ^d	2 in d	2	5.05
45 mm	1 ³ / ₁ in.	1.75	4.85
37.5 mm	$1^{1/2}$ in.	1.5	4.59
31.5 mm	1 ¹ / ₄ in.	1.25	4.23
26.5 mm	1.06 in.	1.06	3.90
25.0 mm ^d	1 in.^d	1	3.80
22.4 mm	7/8 in.	0.875	3.50
19.0 mm	$^{3/_{4}}$ in.	0.750	3.30
16.0 mm	⁵ / ₈ in.	0.625	3.00
13.2 mm	0.530 in.	0.530	2.75
12.5 mm ^d	1/2 in.d	0.500	2.67
11.2 mm	$\frac{7}{16}$ in.	0.438	2.45
9.5 mm	$^{3}/_{8}$ in.	0.375	2.27
8.0 mm	$\frac{5}{16}$ in.	0.312	2.07
6.7 mm	0.265 in.	0.265	1.87
6.3 mm ^d	$\frac{1}{4}$ in.d	0.250	1.82
5.6 mm	No. $31/2^{e}$	0.223	1.68
4.75 mm	No. 4	0.187	1.54
4.00 mm	No. 5	0.157	1.37
3.35 mm	No. 6	0.132	1.23
2.80 mm	No. 7	0.111	1.10
2.36 mm	No. 8	0.0937	1.00
2.00 mm	No. 10	0.0787	0.900
1.70 mm	No. 12	0.0661	0.810
1.40 mm	No. 14	0.0555	0.725
1.18 mm	No. 16	0.0469	0.650
1.00 mm	No. 18	0.0394	0.580
850 μm/	No. 20	0.0331	0.510
710 μm	No. 25	0.0278	0.450
600 μm	No. 30	0.0234	0.390
500 μm	No. 35	0.0197	0.340
425 μm	No. 40	0.0165	0.290
355 µm	No. 45	0.0139	0.247
300 µm	No. 50	0.0117	0.215
250 μm	No. 60	0.0098	0.180
212 µm	No. 70	0.0083	0.152
180 µm	No. 80	0.0070	0.131
150 μm	No. 100	0.0059	0.110
125 μm	No. 120	0.0049	0.091

TABLE 1-U.S. standard sieve series (ASTM Designation Ella).

106 µm	No. 140	0.0041	0.076
90 µm	No. 170	0.0035	0.064
75 µm	No. 200	0.0029	0.053
63 µm	No. 230	0.0025	0.044
53 µm	No. 270	0.0021	0.037
45 µm	No. 325	0.0017	0.030
38 µm	No. 400	0.0015	0.025

TABLE 1-(Continued)-U. S. standard sieve series (ASTM Designation E 11 a).

" For complete specifications including permissible variations from nominal apertures and wire diameters and method of checking and calibrating, see the most recent ASTM Designation E 11 (Vol. 14.02), issued by American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa 19103.

 b These standard designations correspond to the values for test sieve apertures recommended by the International Standards Organization, Geneva, Switzerland.

^c Only approximately equivalent to the metric values in column 1.

d These sieves are not in the standard series but they have been included because they are in common usage.

^e These numbers $(3\frac{1}{2}$ to 400) are the approximate number of openings per linear inch but it is preferred that the sieve be identified by the standard designation in millimeters or μ m.

 $f 1000 \ \mu m = 1 \ mm.$

Standard ^b	Alternative		enters	Flate	Thickness	
	in. ^d	Standard mm	Alternative in. ^d	Standard mm	Alterna in. ^d	ative gage ^e
1	2	3	4	5	6	7
125	5	160	61/4	3.4	0.1345	10
106	41/4	135	$5^{1/4}$	3.4	0.1345	10
100/	4	128	5	3.4	0.1345	10
90	$3^{1/2}$	111	$4^{3}/8$	2.7	0.1046	12
75	3	95	33/4	2.7	0.1046	12
63	2 ¹ / ₂	80	31/8	2.7	0.1046	12
53	$2^{1/8}$	68	25/8	2.7	0.1046	12
50 ^f	2	64	$2^{1/2}$	2.7	0.1046	12
45	$1^{3}/_{4}$	57	21/4	1.9	0.0747	14
37.5	11/2	48	17/8	1.9	0.0747	14
31.5	11/4	41	15/8	1.9	0.0747	14
26.5	$11/_{16}$	35	$1^{5/16}$	1.9	0.0747	14
25.0/	1	32	11/4	1.9	0.0747	14
22.4	τ_{8}	29	$1^{1/8}$	1.9	0.0747	14
19.0	3/4	25	1	1.9	0.0747	14
16.0	⁵ /8	21	13/16	1.9	0.0747	14
13.2	17/32	18	$3/_{4}$	1.9	0.0747	14
12.5/	1/2	17	11/16	1.9	0.0747	14
11.2	7/16	15	5/8	1.9	0.0747	14
9.5	3/8	13.0	$1/_{2}$	1.9	0.0747	14
8.0	5/ ₁₆	11.0	7/16	1.9	0.0747	14
6.7	17/64	9.9	25/64	1.5	0.0598	16
6.3/	1/4	9.5	3/8	1.5	0.0598	16
5.6	7/32	8.7	$11/_{32}$	1.5	0.0598	16
4.75	3/16	6.8	1/4	1.5	0.0598	16
4.00	5/32	5.9	7/32	1.5	0.0598	16
3.35	0.127(1/8)	4.9	3/16	1.5	0.0598	16
2.80	7/64	4.4	11/64	1.5	0.0598	16
2.36	3/32	3.8	5/32	1.5	0.0598	16
2.00	0.078	3.3	1/8	1.5	0.0598	16
1.70	0.066	2.9	7/64	0.8	0.0299	22
1.40	0.055	2.6	0.100	0.8	0.0299	22
1.18	0.045	2.2	0.090	0.8	0.0299	22
1.00	0.039	2.0	0.077	0.8	0.0299	22

TABLE 2—U.S. standard perforated plates sieves (ASTM Designation E 323a).

" For complete specifications, including permissible variations from normal apertures, plate thicknesses and other characteristics, and for method of checking, see the most recent ASTM Designation E 323 (Vol. 14.02) issued by American Society for Testing and Materials, 1916 Race St., Philadelphia. Pa. 19103.

 \overline{b} The values shown in this table refer to both round and square apertures. In general, square-aperture perforated-sieve plates are available only in 3.35 mm and larger.

^c These standard designations, progressing from a base of 1 mm in the ratio of approximately $\sqrt[4]{2}$ to 1, correspond to the values for test sieve apertures recommended by the International Standards Organization, Geneva, Switzerland.

^d Only approximately equivalent to the standard values.

^e The gage values are for carbon steel. For other materials, the gage used should be the nearest decimal equivalent of the U.S. standard gage for steel.

f These sieves are not in the standard series but they have been included because they are in common usage.

MANUAL ON TEST SIEVING METHODS

Т	MILLIMET able 1	TER SIZES Table 2		
Principal sizes (R 20/3)	Supplementary sizes (R 20)	Principal sizes (R 20/3)	Supplementary sizes (R 40/3)	
mm	mm	mm	mm	
125	125 112	125	125 106	
90.0	100 90.0 80.0	90.0	90.0 75.0	
63.0	71.0 63.0 56.0	63.0	63.0 53.0	
45.0	50.0 45.0 40.0	45.0	45.0 37.5	
31.5	35.5 31.5 28.0	31.5	31.5 26.5	
22.4	25.0 22.4 20.0	22.4	22.4 19.0	
16.0	18.0 16.0 14.0	16.0	16.0	
11.2	12.5 11.2 10.0	11.2	13.2 11.2	
8.00	9.00 8.00 7.10	8.00	9.50 8.00	
5.60	6.30 5.60 5.00	5.60	6.70 5.60	
4.00	4.50 4.00 3.55	4.00	4.75 4.00	
2.80	3.33 3.15 2.80 2.50	2.80	3.35 2.80	
2.00	2.30 2.24 2.00 1.80	2.00	2.36 2.00	
1.40	1.80 1.60 1.40 1.25	1.40	1.70 1.40	
1.00	1.25 1.12 1.00	1.00	1.18 1.00	

 TABLE 3—International Standard (ISO)—Test Sieves—Woven Metal Wire Cloth and Perforated Plate Nominal Size of Apertures

NOTE—The proposed nominal sizes of apertures are taken from the series R 20 and R 40/3 of preferred numbers given in ISO/R 3. Sizes below 40 μ m are based on series R'20 (Table 1) and R'40/3 (Table 2) given in ISO/R 497.

All sizes below 45 μ m are regarded as supplementary sizes, regardless of series.

	MICROMET	ER SIZES	
Т	able 1	Т	able 2
Principal sizes (R 20/3)	Supplementary sizes (R 20)	Principal sizes (R 20/3)	Supplementary sizes (R 40/3)
μm	μm	μm	μm
	900 800		850
710	710 630 560	710	710 600
500	500 450 400	500	500 425
355	355 315	355	355 300
250	280 250 224	250	250 212
180	200 180 160	180	180 150
125	140 125 112	125	125 106
90	100 90 80	90	90 75
63	71 63 56	63	63 53
45	50 45 40	45	45 38
	36 32		32
	28 25 22		26 22
	22 20		22

 TABLE 3-(Continued)-International Standard (ISO)-Test Sieves-Woven Metal

 Wire Cloth and Perforated Plate Nominal Size of Apertures

All sizes listed in R20/3 and R40/3 are included in ASTM E-11 and E-323.

Some foreign countries may use sizes listed in R/20. These are not all compatible with E-11 or E-323.

Suggestions on Procedures for Making Sieve Analysis with Precision Electroformed Sieves

Precision electroformed sieves must be considered as delicate precision instruments and handled with the utmost care to obtain satisfactory results and reasonable sieve life. Sieves should conform to ASTM Specification E 161-67 and should be calibrated or given correction factors to conform to one of the methods given in the Appendix to Specification E 161.

When using the vibration type electromagnetic shaker, (Fig. 8), it is recommended that the sieve or sieve stack with pan and cover be secured to the shaker pad with two rubber bands, in such a manner that the stack bounces and rocks slightly when the control knob is turned to the medium or high position. Avoid the use of metal spring holders as they hold the stack too firmly to permit the desired rocking motion. A good practice is to hold adjacent sieves together with $3\frac{1}{2}$ by $3\frac{4}{1}$ -in. rubber bands to reduce wear of one sieve on another, as well as to prevent escape of any air-borne material.

When using a sifter of the "oscillating air column" type (see Paragraph 8.5 and Fig. 9) with electroformed sieves, follow the manufacturer's instructions as the suggestions in the two preceding paragraphs would not apply.

Weighing—Samples are not removed from electroformed sieves for weighing as there is too much danger of loss in the transfer of the small retained fractions. This loss causes serious errors in the recorded results. Sieves and the pan are weighed on an analytical balance before and after the test to obtain the weights of the retained fractions.

When removing sample fractions from the sieve after the test, gently brush and tap the contents loose from the sieve while it is held in an inverted position. Do not attempt to dislodge particles by slapping the sieve on the bench, because this action will spring and tear the fine mesh from its supporting grid. Avoid using a sieve that has become blinded for a subsequent test until the sieve has been cleaned and the blinding eliminated, or reduced to less than 15 percent.

Sample sizes for tests with electroformed sieves cannot be precisely stated because of factors such as particle shape, density, propensity to agglomerate, size range and distribution, number of sieves used in the test, and the percentage of open area of the sieve. Sample sizes should be as small as practicable, and weights should be recorded to the nearest milligram. Samples should be large enough to obtain weighable retained fractions on the sieve without overloading any sieve as overloading increases the blinding problem.

Wet Sieving—If a sample has a preponderance of particles smaller than 40 μ m or cannot be dry sieved conveniently, it may be wet sieved through electroformed sieves with a suitable polar liquid or hydrocarbon containing a trace of dispersant. A set of sieves may be mounted in an airtight manner on a suction flask, which can be vibrated as mild alternate suction, and pressure applied to the flask. The sample is washed through each sieve in turn with a fine stream of the liquid and at the same time stroked across the sieve sheet with a $\frac{3}{4}$ -in. wide flat lettering brush.

Cleaning and Repair—Precision electroformed sieves may be cleaned with the aid of ultrasonic vibrations while immersed in an equivolume mixture of denatured or isopropyl alcohol and distilled water. The sieve should be placed in the ultrasonic cleaning tank with the sieve sheet in the vertical position. Low-power ultrasonic energy should be used for not more than 15 s at a time to prevent cavitation damage to the sieve sheet. Remove the sieve, flush with distilled water, and dry in an oven at 100 C.

If the sieve sheet is broken it can be repaired by: (1) applying epoxy resin type cement with the point of a fine needle, or (2) applying small spheres of metal solder with a pencil point iron. In both procedures a low-power ($\times 10$ to $\times 50$) binocular microscope is a necessary aid.

Sieve Designation, Nominal Size of Opening, ^b µm	Permissible Variation of Sieve Openings, µm	Limits, Openings per Linear Inch, ^c min and max
1	2	3
150	147 to 153	90 to 120
125	122 to 128	110 to 145
106	104 to 108	135 to 175
90	88 to 92	160 to 210
75	73 to 77	190 to 245
63	61 to 65	225 to 290
53	51 to 55	240 to 320
45	43 to 47	260 to 350
38	36 to 40	285 to 400
32	30 to 34	380 to 500
27	25 to 29	450 to 550
22	20 to 24	450 to 550d
15	13 to 17	450 to 700 ^d
10	9 to 11	450 to 800 ^d
5	4 to 6	450 to 1000 ^d

TABLE 4—Precision electroformed sieves (ASTM Designation E 161^a).

^a For complete specifications, including method of calibrating electroformed sieves, see the most recent ASTM Designation E 161 issue by American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103.

^b These nominal size openings are approximately in a ratio of $\sqrt[4]{2}$ to 1 for the openings 22 μ m and larger. These standard designations correspond to the values for test sieve apertures recommended by the International Standards Organization, Geneva, Switzerland.

^c These limits permit at least two adjacent sieves to be formed with the same number of openings per inch. The percent open area must in no case be so great that the width of metal between openings is less than 18 μ m.

^d Because of their greater durability in routine testing, sieves made close to the minimum limit are normally supplied. Sieves made close to the maximum limit may be obtained only on special order but are preferable from the standpoint of logical progression and better test completion time.

Standard Siev	e Designation	Bulk Volume of Material			
Standard	Alternate	Recommended Volume of Material for Test Sample	Maximum Permitted Volume on Sieve on Completion of Sieving		
1	2	3	4		
25.0 mm	1 in.	1800 cm ³	900 cm ³		
22.4	7/8	1600	800		
19.0	3/4	1400	700		
16.0	5/8	1000	500		
12.5	$1/_{2}$	800	400		
11.2	7/16	800	400		
9.5	3/8	600	300		
8.0	⁵ /16	500	250		
6.3	1/4	400	200		
5.6	No. 31/2	400	200		
4.0	No. 5	350	150		
2.80	No. 7	240	120		
2.0	No. 10	200	100		
1.40	No. 14	160	80		
1.0	No. 18	140	70		
710 µm	No. 25	120	60		
500	No. 35	100	50		
355	No. 45	80	40		
250	No. 60	70	35		
180	No. 80	60	30		
125	No. 120	50	25		
90	No. 170	40	20		
63	No. 230	35	17		
45	No. 325	30	15		
38	No. 400	25	12		

 TABLE 5-Suggested bulk volume of test sample for sieve analysis

 with 8-in. and 200-mm round sieves.^a

^a The recommended weight of material for a sieve test sample is calculated by multiplying the bulk volume figure in Column 3 by the particular bulk density in grams per cubic centimeter of the material, rounded out within a tolerance of ± 25 percent. If the density figure for the material being tested is not readily available, use the factor of the nearest similar material shown in Table 6.

	Average	e Weight		Average	Weight
Material	Lbs/Ft ³	G/Cm ³	Material	Lbs/Ft ³	G/Cm ³
Alumina	44	1.23	Garnet	168	2.69
Aluminum,			Glass beads	76	1.22
calcined	128	2.05	Glass, crushed	66	1.06
Aluminum oxide	122	1.96	Glass cullet	93	1.49
Aluminum shot	96	1.54	Granite, crushed	95 to 100	1.52 to 1.60
Ammonium nitrat	ce 48	0.77	Gravel	90 to 100	1.44 to 1.60
Ammonium			Gypsum, calcined	58	0.93
sulphate	61	0.98	Gypsum, crushed	90 to 100	1.44 to 1.60
Asbestos ore	54	0.87	Irone ore	120 to 150	1.92 to 2.40
Bagasse	6	0.09	Kaolin	160	2.56
Bauxite ore	75 to 85	1.20 to 1.36	Kyanite	68	1.09
Bentonite	50 to 65	0.80 to 1.04	Lime, ground	60	0.96
Bicarbonate of			Lime, hydrated	25	0.40
soda	57	0.91	Limestone,		
Borax	50 to 61	0.80 to 0.98	crushed	85 to 100	1.36 to 1.60
Boric acid	58	0.93	Limestone,		
Calcite	90 to 105	1.44 to 1.68	agricultural	70	1.12
Calcium carbide	75	1.20	Magnesite	106	1.70
Calcium			Magnetite	155	2.49
carbonate	49	0.79	Manganese ore	120 to 136	1.92 to 2.18
Calcium chloride	64	1.03	Marble, crushed	90 to 95	1.44 to 1.52
Calcium			Metals, powdered		
phosphate	57	0.91	Aluminum	80	1.28
Carbon black	24	0.33	Copper	169	2.71
Cellulose powder	16	0.26	Copper-lead	364	5.84
Cement,			Iron	243	3.90
portland	90 to 100	1.44 to 1.60	Nickel	263	4.22
Cement clinker	75 to 80	1.20 to 1.28	Stainless steel	240	3.85
Chrome ore	140	2.25	Tantalum	300	4.80
Clay	30 to 75	0.48 to 1.20	Mica	42	0.67
Coal, anthracite	55	0.88	Ore, sintered	114	1.83
Coal, bituminous	50	0.88	Oyster shells,		
Coke breeze	25 to 35	0.40 to 0.56	ground	29	0.47
Coke, petroleum	25 to 40	0.40 to 0.64	Perlite ore	65 to 75	1.04 to 1.20
Copper ore	100 to 150	1.60 to 2.40	Plaster, calcined	64	1.03
Coquina shell	80	1.28	Polyethylene		
Corn starch	40	0.64	pellets	36	0.58
Diatomaceous		. •	Polyethylene		
earth	31	0.5	powder	18	0.29
Dicalcium	C 4	1.02	Poly (vinyl chlor		0.48
phosphate	64	1.03	Potash	77	1.23
Dolomite,	00 / 100	1 4 4 4 1 60	Potassium	-	
crushed	90 to 100	1.44 to 1.60	carbonate	79	1.27
Feldspar, crushed		1.04 to 1.35	Pumice	40	0.64
Ferrophosphorous	s 196 80	3.1 ⁴ 1.28	Rubber, chopped	36	0.58
Fire clay Flour, wheat	80 24	0.38	Rubber, ground	20 75 to 85	0.32
	24 37	0.38 0.59	Phosphate rock	75 to 85	1.20 to 1.36
Flour, maize Fluorspar	90 to 120	0.59 1.44 to 1.92	Salt, flake	61 66	0.98
Fly ash	90 to 120 49	1.44 to 1.92 0.79	Salt, rock Salt, table	66 75	1.06 1.20
Fullers earth	30 to 4 9	0.48 to 0.6 i	Sand	75 90 to 100	1.20 1.44 to 1.60
		0.40 10 0.01		30 10 100	1.44 10 1.00

TABLE 6-Typical bulk densities of various particulate materials. (Weights, per unit of volume, are of divided, crushed, or pulverized materials in freely poured condition.")

	Average Weight			Average	e Weight
Material	Lbs/Ft ³	G/Cm ³	Material	Lbs/Ft ³	G/Cm ³
Sand, silica	90 to 100	1.44 to 1.60	Sugar, granulated	50	0.80
Sawdust	18	0.29	Sugar, powdered	37	0.59
Seacoal	42	0.67	Sulphur, crushed	50 to 65	0.80 to 1.04
Shale	100	1.60	Talc, powder	34	0.55
Shot, metal	230	3.69	Talc, granular	44	0.71
Silica flour	27	0.43	Traprock,		
Silica gel	45	0.72	crushed	105 to 110	1.68 to 1.76
Soapstone,			Triple superphos-		
pulverized	40	0.64	phate, granular	64	1.03
Soda ash, light	25 to 35	0.40 to 0.56	Tungsten carbide	550	8.82
Soda ash, heavy	55 to 65	0.88 to 1.04	Urea prills	43	0.69
Soda, bicarbonate	57	0.91	Vermiculite ore	80	1.28
Sodium nitrate	78	1.25	Wood chips	13	0.21
Sodium phosphate	e 43	0.69	Zinc dust	144	2.31
Sodium sulfate	96	1.54	Zirconium oxide	200	3.22
Steel grit	228	3.66	Zirconium sand	162	2.60
Stone, crushed	85 to 95	1.36 to 1.52			

TABLE 6-(Continued)-Typical bulk densities of various particulate materials.

^a Where a single figure is given, it represents an actual weight of a typical average sample of the material recorded by a research laboratory; therefore, the figure can be expected to vary from sample to sample of the same material.

AS Des Material nat	ig-	Sieve No. or Size Range	Dry '	Wet
Activated				
	62 Particle Size Distribution of Gra ular Activated Carbon (Vol. 15.			Х
AggregatesC11	7 Test for Materials Finer Than M 200 Sieve in Mineral Aggrega by Washing ^a (Vols. 4.02, 4.03)	No. 200 tes		Х
C 15				
C 15			Х	
C 14			Х	
C 1			Х	
C 3		ght 1 in100	Х	Х
C 3		ght ¾ in100 Ma-	х	х

TABLE 7—List of ASTM published standards on sieve analysis procedures forspecific materials or industries.

AST Des	g-	Sieve No. or Size		
Material nati	n Title of Standard	Range	Dry	Wet
AsbestosD 25	9 Test for Bauer-McNett Wet Clas- sification of Asbestos Fiber (Vols. 4.05, 7.02, 8.02)	4-325		X
D 29	17 Method for Screen Analysis of As- bestos Fibers (Vols. 4.05, 7.02, 8.02)	4-70	Х	
Asphalt D 24	Testing Emulsified Asphalts (Vol. 4.03)	20		X
Carbon black D 15	8 Test Method for Carbon Black, Pelleted Fines Content (Vol. 9.01)	100	Х	
D 15	1 Test Method for Carbon Black, Pellet Size Distribution (Vol. 9.01)	10-120	Х	
D 15	4 Test Method for Sieve Residue from Carbon Black (Vol. 9.01)	30-325		X
CementC 18		100 200	X	
C 43		325	Х	
C 78	. ,	100-325	х	
Ceramic ^{<i>b</i>} C 32		100-325		X
C 37	/	70-325		X
C 92		100-400		X
Clays C 77		10-325	X	
Coal D 19	 Sampling and Fineness Test of Pulverized Coal^a (Vol. 5.05) 	8-325	X	
D 31		4¾ in¾6 in.	X	
D 31		1 in6	X	
D 40	Grindability of Coal by Hard- grove Machine Method (Vol. 5.05)	¥s-200	х	
D 41		8 in200	X	
D 43	Method for Designating the Size of Coal from its Sieve Analysis (Vol. 5.05)	8 in200	Х	
CokeD 29	B Test Method for Sieve Analysis of Coke ^a (Vol. 5.05)	4 in0	X	
EnamelC 28		40-325	Х	Х

 TABLE 7-(Continued)-List of ASTM published standards on sieve analysis

 procedures for specific materials or industries.

Material	ASTM Desig- nation		Sieve No. or Size Range	Drv	Wet
Glass		Method for Sieve Analysis of Raw Materials for Glass Manufacture ^a (Vol. 15.02) Test Method for Sieve Analysis of	8-200	Х	Х
		Glass Spheres (Vol. 4.02, 4.08)			
Lime	.C 110	Physical Testing of Quicklime, Hydrated Lime, and Limestone (Vol. 4.01)	20-325	Х	
	C 141	Specification for Hydraulic Hydrated Lime for Structural Purposes (Vol. 4.01)	20-200	X	
Magnesium	D 0550		00.000	77	
	.D 2772	Method for Sieve Analysis of Electrical Grade Magnesium Ox- ide (Vol. 10.02)	20-200	х	
Metal bearing	F 0 7 4		4 900	v	v
ores	.Е 276	Test for Particle Size or Screen Analysis at No. 4 Sieve and Finer for Metal Bearing Ores and Re- lated Materials ^{a} (Vol. 3.05)	4-200	Х	Х
	E 389	Test Method for Particle Size or Screen Analysis at No. 4 Sieve and Coarser for Metal Bearing Ores and Related Materials (Vol. 3.05)	4	X	
Metal powders .	. B 214	Test for Sieve Analysis of Granu- lar Metal Powders (Vol. 2.05)	80-325	Х	
Mineral	.D 451	Test Method for Sieve Analysis of Granular Mineral Surfacing for Asphalt Roofing Products ^a (Vols. 4.02, 4.04, 4.08)	6-100	Х	
	D 452	Test Method for Sieve Analysis of Nongranular Mineral Surfacing for Asphalt Roofing and Shingles ^a (Vols. 4.02, 4.04, 4.08)	12-200	х	
	D 546	Test Method for Sieve Analysis of Mineral Filler for Road and Pav- ing Materials (Vols. 4.03, 4.08)		х	
Perlite	.C 549	Specification for Perlite Loose Fill Insulation ^a (Vol. 4.06)	16-100	x	
Pigments and		,			
paint	.D 185	Test Method for Coarse Particles in Pigments, Pastes, and Paints (Vols. 6.01, 6.02)	325	Х	х
	D 480	Methods of Sampling and Testing Aluminum Powder and Paste ^a (Vol. 6.02)	100-325		Х
	D 718	Methods of Analysis of Aluminum Silicate Pigment (Vol. 6.02)	325		X
Plastic	.D 1921	Test Method for Particle Size (Sieve Analysis) of Plastic Materi- als (Vol. 8.02)		х	

 TABLE 7--(Continued)-List of ASTM published standards on sieve analysis

 procedures for specific materials or industries.

AS Des Material nat	ig-	Sieve No. or Size Range	Dry	Wet
RefractoriesC 92	Tests for Sieve Analysis and W ter Content of Refractory Mate als (Vol. 15.01)		Х	x
Refuse Derived FuelE 82	8 Designating the Size of REF from its Sieve Analysis (Vo 11.04)		Х	
Resins D 14	57 Specification for PTFE Moldin and Extrusion Materials (Vo 8.01)			X
D 17	 05 Method for Particle Size Analys of Powdered Polymers and Copymers of Vinyl Chloride (Volta) 8.02) 	ol-		X
D 21	87 Test Methods for Physical as Chemical Properties of Ion-E change Resins" (Vol. 11.02)			Х
SandC 77		nd 16-100	Х	
SoapD 50			X	
SoilD 42)e-	X	
D 42	· · · · · · · · · · · · · · · · · · ·	sis 3 in200		х
D 1	40 Test for Amount of Material Soils Finer Than the No. 2 Sieve (Vol. 4.08)			X
D 22	17 Method for Wet Preparation Soil Samples for Particle-Si Analysis and Determination Soil Constants (Vol. 4.08)	ze		x
D 24	19 Test for Sand Equivalent Value Soils and Fine Aggregate (Vo 4.02, 4.03, 4.08)			X
D 24	87 Test for Classification of Soils f Engineering Purposes (Vol. 4.0		Х	Х
VermiculiteC 51		ite ¾-100	X	

 TABLE 7-(Continued)-List of ASTM published standards on sieve analysis

 procedures for specific materials or industries.

^a Contains suggestions on sampling.

MANUAL ON TEST SIEVING METHODS

ASTM Desig-	
Material nation	Title of Standard
AggregatesD 75	Practice for Sampling Aggregates (Vols. 4.02, 4.03, 4.08)
Asbestos fiber D 2590	Method of Sampling Asbestos Fiber for Testing (Vols. 4.05, 7.02, 8.02)
Bituminous materialsD 140	Methods of Sampling Bituminous Materials (Vols. 4.03,
D 979	4.08) Methods of Sampling Bituminous Paving Mixtures (Vols. 4.03, 4.08)
Calcium chloride D 345	Methods of Sampling and Testing Calcium Chloride for Roads and Structural Applications (Vols. 4.02, 4.03, 4.08)
Carbon blackD 1799	Method for Sampling Bulk Shipments of Carbon Black (Vol. 5.02)
D 1900	Method for Sampling Bulk Shipments of Carbon Black (Vol. 9.01)
CementC 183	Methods of Sampling and Acceptance of Hydraulic Ce- ment (Vols. 4.01, 4.03)
Ceramic claysC 322	Method of Sampling Ceramic Whiteware Clays (Vol. 15.02)
CoalD 197	Method of Sampling and Fineness Test of Pulverized Coal (Vol. 5.05)
D 2013	Method of Preparing Coal Samples for Analysis (Vol. 5.05)
D 2234 CokeD 346 Electrical	Methods for Sampling of Coal (Vol. 5.05) Method of Sampling Coke for Analysis (Vol. 5.05)
insulating materialsD 2755	Method of Sampling and Reduction to Test Weight of Electrical Grade Magnesium Oxide (Vol. 10.02)
Lime and	
limestoneC 50	Methods of Sampling, Inspection, Packing, and Mark- ing of Lime and Limestone Products (Vols. 4.01, 4.03)
Metal powders B 215 Plastics D 1898	Methods of Sampling Finished Lots of metal Powders (Vol. 2.05)
	Recommended Practice for Sampling of Plastics (Vol. 8.02)
Soap powders D 460	Methods for Sampling and Chemical Analysis of Soap and Soap Products (Vol. 15.04)
Statistical probabilitiesE 105	Recommended Practice for Probability Sampling of Materials (Vols. 4.03, 7.01, 14.02)
E 122	Recommended Practice for Choice of Sample Size to Estimate the Average Quality of a Lot or Process (Vol. 14.02)
E 141	Recommended Practice for Acceptance of Evidence Based on the Results of Probability Sampling (Vol. 14.02)

TABLE 8-List of ASTM published standards on sampling of particulate materials.

Nomenclature

General Terms	
Agglomerate	Two or more particles held together loosely by weak mechanical or physical forces.
Aperture	Dimensions defining an opening in a screening surface.
Balling	Agglomeration of particles into a very loose or feathery mass usually in a liquid.
Bulk density	Ratio of the mass of a material to its volume, in a freely poured condition.
Disperse	To separate an agglomerate or floc into measurable entities or workable particles.
Effective opening	The size of the largest particle that will pass a screen aperture.
Flocculate	An assembly of particles bonded together by strong molecular or chemical forces.
Near-mesh or near-size	Particles of a size approximately equal to that of
	the sieve aperture.
Open area	Ratio of the total area of the apertures to the total area of the screen, expressed as a percentage.
Particle size	The dimension of a particle, usually expressed in terms of the smallest sieve aperture through which it will pass.
Particulate	Pertaining to a material composed of distinct separate particles.
Representative	A comple taken from a larger quantity of metericit
sample	A sample taken from a larger quantity of material which retains, within close limits, the particle size distribution characteristics of the original material from which it was taken.
Screen	(a) A surface provided with apertures of uniform size and shape; (b) a machine provided with one or more screening surfaces.
Screening	The process of separating a mixture of different sizes by means of one or more screening surfaces.
Sieve	A screen mounted on a frame, usually for labor- atory test purposes.
Test Sieves	
Certified sieve	A test sieve that has been examined and certified by an authority, accredited for the purpose, as complying with the specifications and tolerances of the applicable standard.
Cover (lid)	A cover which fits snugly over a sieve to prevent the escape of material being sieved.
Matched sieve	A test sieve that duplicates the results of a master sieve within specified limits.

Nesting pan	A pan with nesting skirt for use in a stack of sieves to permit two or more separate sieve tests to be made simultaneously, usually with a mechanical sieve shaker.
Pan (receiver)	A pan which fits snugly beneath a sieve to receive the passing fraction.
Sieve cloth series	Sieve cloth woven to a mathematically defined set of aperture widths, wire diameters, and tolerances.
Sieve frame	A rigid framework which supports the sieving medium and limits the spread of the material being sieved.
Sieve scale	A series of sieve apertures having a systematic mathematical progression.
Skirt	The portion of the sieve frame which extends below the sieving surface and nests into the next finer sieve of receiving pan.
Standard sieve	A sieve which conforms to a standard specification for test sieves.
Test Sieving	
Cumulative oversize distribution graph	A graph obtained by plotting the total percentages by weight retained on each of a set of sieves of descending aperture size against the corresponding aperture sizes.

Cumulative undersize

Size distribution

- distribution graph A graph obtained by plotting the total percentages by weight passing each of a set of sieves of descending aperture size against the corresponding aperture sizes.
- Dry sieving End point Sieving without the aid of a liquid. The stopping point in a sieve test at which further sieving fails to pass an amount sufficient to change the result.
- Gross sample A representative sample taken from a large volume of material that is too large to use in a test sieve. Laboratory sample See test sample.
- Sieve analysis The results of a sieve test showing the percentages of sample retained on (or passing) each sieve used in the test.
- Size analysis The results of dividing a sample into fractions of defined limits. (See also sieve analysis.)
- graph A graphical representation of the results of a sieve analysis test.
- Size range The limits between the smallest and the largest particle in a sample.
- Test sample A representative sample that is small enough to use directly in a test sieve or series of sieves.

Test sieving	Sieving with one or more test sieves to determine
	the particle size distribution of a particulate mate- rial.
Wet sieving	Sieving with the aid of a suitable liquid.

Production Screening

Troudenon Screenin	·8
Feed Oversize	Material supplied to a screen for screening. That portion of the feed material which has failed to pass through the apertures of a screen.
Oversize in undersize	Particles in a screen undersize which are larger than the nominal point of separation.
Point of	
separation	In a screening operation, the size of aperture which will allow undersize particles to pass and will reject oversize particles.
Screen efficiency	The percentage of recovery of the desired portion (usually the undersize) from the amount available in the feed.
Undersize (fines)	That portion of the feed material which has passed through the apertures of a screen.
Undersize in	
oversize	Particles in a screen oversize which are smaller than the nominal point of separation.
Woven Wire Cloth	
Double crimp	Wire cloth woven with approximately equal corrugations in both warp and shoot to lock the wires in position.
Mesh	(a) The number of apertures per unit of length;(b) in countries using English measure, the number

(b) in countries using English measure, the number of openings, and fraction thereof, per linear inch counting from the center of a wire.

Plain weave Wire cloth in which each warp wire and each shoot wire passes over one and under the next adjacent wire in both directions.

Rectangular mesh Mesh with unequal aperture widths in warp and shoot direction.

Shoot wires The wires running crosswise of the cloth as woven (also called "shute wires").

Space cloth Wire cloth which is designated by the clear opening between the wires instead of by the mesh.

Square mesh Mesh with equal aperture widths in warp and shoot direction.

Twilled weave Wire cloth in which each shoot wire passes successively over two and under two warp wires and each warp wire passes successively over two and under two shoot wires.

Warp wires	The wires running the long way of the cloth as woven.
Weft wires	See shoot wires.
Perforated Plate	
Bridge width	Distance between the nearest edges of two adjacent holes in a perforated plate.
Hole size	In perforated plate, the diameter of the round hole; width of the square hole at its mid-section; smallest width of the oblong hole.
Margin	Distance between the outside edges of the outside rows of holes and the edges of a perforated plate.
Perforated plate	A plate with uniform holes, in symmetrical arrangement.
Pitch	Distance between the centers of two adjacent holes in a perforated plate.

Electroformed Sieves

Electroformed mesh	A sieve sheet formed by electrodeposition on photo- sensitized, machine-ruled lines.
Micromesh	Synonym for electroformed mesh.
Nominal size	The specified dimension of the opening of a sieve about which the actual size is permitted to vary.
Sieve sheet	The sieving plate composed of the fine electro- formed mesh bonded to the supporting grid.
Supporting grid	A relatively thick sheet of metal having large, uni- form, square openings to which the fine mesh is bonded for support.

References

- Allen, T., Particle Size Measurement, Chapman and Hall, London, 1968.
- Orr, C., Jr., Particulate Technology, Macmillan, New York, 1966.
- Cadle, R. D., Particle Size, Reinhold, New York, 1965. Irani, R. R. and Callis, C. F., Particle Size: Measurement, Interpretation and Application, Wiley, New York, 1963.
- Herdan, G., Small Particle Statistics, 2nd ed., Academic, New York, 1960.
- Batel, W., Einfuhrung in die Korngrossenmesstechnik, Springer-Verlag, Berlin, 1960.
- Orr, C., Jr., and Dalla Valle, J. M., Fine Particles Measurement: Size Surface and Pore Volume, Macmillan, New York, 1959.
- Rose, H. E., Measurement of Particle Size in Very Fine Powders, Chemical, New York, 1954.
- Dalla Valle, J. M., Micrometritics, The Technology of Fine Particles, 2nd ed., Pitman, New York, 1948.
- "Particle Size Analysis," Analytical Chemistry, Society of Analytical Chemistry, London, 1967.
- "Powders in Industry," SCI Monograph 14, 1961 Society of Chemical Industry, London.
- Particle Size Measurement, ASTM STP 234, American Society for Testing and Materials, Philadelphia, 1959.
- "The Physics of Particle Size Analysis," British Journal of Applied Physics, Supplement No. 3, Institute of Physics, London, 1954.
- "Particle Size Analysis," Supplement to Transactions, Institute of Chemical Engineers, London, Vol. 25, 1947.
- New Methods for Particle Size Determination in the Subsieve Range, ASTM STP 51, American Society for Testing and Materials, Philadelphia, 1941.
- Specification for Wire-Cloth Sieves for Testing Purposes, ASTM Standard E-11 (Vol. 14.02), American Society for Testing and Materials, Philadelphia, 1981.
- Specification for Precision Electroformed Sieves, ASTM Standard E-161 (Vol. 14.02), American Society for Testing and Materials, Philadelphia, 1977.
- Specification for Perforated-Plate Sieves for Testing Purposes, ASTM Standard E-323 (Vol. 14.02), American Society for Testing and Materials, Philadelphia, 1980.
- Specification for Industrial Wire Cloth and Screens (Square Opening Series), ASTM Standard E-437 (Vol. 14.02), American Society for Testing and Materials, Philadelphia, 1980.
- Specification for Industrial Perforated Plate and Screens (Square Opening Series). ASTM Standard E-454 (Vol. 14.02), American Society for Testing and Materials, Philadelphia, 1980.