STRESS CORROSIGN CRACKING

The Slow
Strain Rate
Technique

Light Gity (Payer)

AMEDICAN SECULOR

STRESS CORROSION CRACKING—THE SLOW STRAIN-RATE TECHNIQUE

A symposium sponsored by
ASTM Committee G-1 on Corrosion of
Metals in cooperation with the
National Association of Corrosion
Engineers TPC Committee T-3E on
Stress Corrosion Cracking of Metallic
Materials
AMERICAN SOCIETY FOR
TESTING AND MATERIALS
Toronto, Canada, 2-4 May 1977

ASTM SPECIAL TECHNICAL PUBLICATION 665 G. M. Ugiansky, National Bureau of Standards, and J. H. Payer, Battelle Columbus Laboratories, editors

List price \$39.75 04-665000-27

Copyright © by American Society for Testing and Materials 1979 Library of Congress Catalog Card Number: 78-68418

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Foreword

The symposium on Stress Corrosion Cracking—The Slow Strain-Rate Technique was held 2-4 May 1977 in Toronto, Canada. The symposium was sponsored by ASTM Committee G-1 on Corrosion of Metals in cooperation with the National Association of Corrosion Engineers TPC Committee T-3E on Stress Corrosion Cracking of Metallic Materials. G. M. Ugiansky, National Bureau of Standards, represented ASTM Committee G-1, and J. H. Payer, Battelle Columbus Laboratories, represented NACE Committee T-3E. Ugiansky and Payer also served as editors of this publication.

Related ASTM Publications

Intergranular Corrosion of Stainless Alloys, STP 656 (1978), \$24.00, 04-656000-27

Stress Corrosion—New Approaches, STP 610 (1976), \$43.00, 04-610000-27

Manual of Industrial Corrosion Standards and Control, STP 534 (1974), \$16.75, 04-534000-27

A Note of Appreciation to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is a direct function of their respected opinions. On behalf of ASTM we acknowledge their contribution with appreciation.

ASTM Committee on Publications

Editorial Staff

Jane B. Wheeler, Managing Editor
Helen M. Hoersch, Associate Editor
Ellen J. McGlinchey, Senior Assistant Editor
Helen P. Mahy, Assistant Editor

Contents

Introduction	1
Background and Interpretation of the Slow Strain-Rate Test Technique	
Development of Strain-Rate Testing and Its Implications—	
R. N. PARKINS	5
Discussion	24
The Role of Film Rupture During Slow Strain-Rate Stress Corrosion	
Cracking Testing—R. B. DIEGLE AND W. K. BOYD	26
Anodic Dissolution and Crack Growth Rate in Constant Strain-Rate	
Tests at Controlled Potentials—M. HISHIDA, J. A. BEGLEY,	
R. D. MCCRIGHT, AND R. W. STAEHLE	47
Discussion	60
Evaluation of Slow Strain-Rate Stress Corrosion Tests Results-	
J. H. PAYER, W. E. BERRY, AND W. K. BOYD	61
Discussion	75
SLOW STRAIN-RATE TECHNIQUE FOR SPECIFIC	
Environments and Application	
Slow Strain-Rate Technique: Application to Caustic Stress Corrosion	
Cracking Studies—G. J. THEUS AND J. R. CELS	81
A Review of the Constant Strain-Rate Stress Corrosion Cracking	
Test—C. D. KIM AND B. E. WILDE	97
Discussion	112
Slow Strain-Rate Stress Corrosion Testing of Metals in Gaseous	
Atmospheres at Elevated Temperatures—G. M. UGIANSKY AND	
C. E. JOHNSON	113
Discussion	130
Slow Strain-Rate Testing in High Temperature Water—	
H. D. SOLOMON, M. J. POVICH, AND T. M. DEVINE	132
Dynamic Straining Stress Corrosion Test for Predicting Boiling Water	
Reactor Materials Performance—w. L. CLARKE, R. L. COWAN,	
AND J. C. DANKO	149
Discussion	168
Slow Strain-Rate Stress Corrosion Testing for Liquid Metal Fast	
Breeder Reactor Steam Generator Applications—M. E. INDIG	170
Stress Corrosion Cracking Test with Slow Strain Rate and Constant	
Current—R. S. ONDREJCIN	203
Discussion	221

Application of Slow Strain-Rate Technique to Stress Corrosion Cracking of Pipeline Steel—J. H. PAYER, W. E. BERRY, AND R. N. PARKINS	222
SLOW STRAIN-RATE TEST TECHNIQUE FOR SPECIFIC METALS AND ALI	LOYS
Propagation of Stress Corrosion Cracks under Constant Strain-Rate	
Conditions—J. C. SCULLY	237
Discussion	252
Slow Strain-Rate Stress Corrosion Testing of Aluminum Alloys—	
G. M. UGIANSKY, C. E. JOHNSON, D. S. THOMPSON, AND	
E. H. GILLESPIE	254
Effect of Oxyanions and Chloride Ion on the Stress Corrosion Cracking Susceptibility of Admiralty Brass in Nonammoniacal Aqueous	
Solutions—a. kawashima, a. k. agrawal, and r. w. staehle	266
Slow Strain-Rate Technique and Its Applications to the Environmental	
Stress Cracking of Nickel-Base and Cobalt-Base Alloys—	
A. I. ASPHAHANI	279
Stress Corrosion Cracking Susceptibility Index, I_{scc} , of Austenitic	
Stainless Steels in Constant Strain-Rate Test—SEIZABURO ABE,	
MASAO KOJIMA, AND YUZO HOSOI	294
Some Aspects of the Stress Corrosion Testing of Austenitic,	
Martensitic, Ferritic-Austenitic and Ferritic Types of Stainless	
Steel by Means of the Slow Strain-Rate Method—A. J. A. MOM,	
R. T. DENCHER, C. J. V.D. WEKKEN, AND W. A. SCHULTZE	305
Detection of Heat Treatment Effects on Environmentally Induced	
Degradation of a Martensitic Stainless Steel and a Nickel-Base	
Alloy by the Slow Strain-Rate Method—P. SUERY	320
Validity of the Slow Straining Test Method in the Stress Corrosion	
Cracking Research Compared with Conventional Testing	222
Techniques—H. BUHL	333
Comparative Findings Using the Slow Strain-Rate, Constant Flow	
Stress, and U-Bend Stress Corrosion Cracking Techniques—	247
W. J. DANIELS	347
Some Comparisons of the Slow Strain-Rate Method with the Constant	
Strain and the Constant Load Methods of Stress Corrosion	262
Testing—J. F. Andrew, J. T. HERON, AND J. STRINGER	362
SLOW STRAIN-RATE TEST TECHNIQUE EQUIPMENT AND PROCEDURE	S
Design and Construction of an Inexpensive Multispecimen Slow	
Strain-Rate Machine-w. T. NUTTER, A. K. AGRAWAL, AND	
R. W. STAEHLE	375
Discussion	385

Multispecimen Test Facility for High Temperature, High Pressure	
Slow Strain-Rate Testing—F. F. LYLE, JR. AND E. B. NORRIS	388
Discussion	398
Portable Slow Strain-Rate Stress Corrosion Test Device—F. HAUSER,	
S. R. ABBOTT, I. CORNET, AND R. S. TRESEDER	399
A Bursting Tube, Slow Strain-Rate Stress Corrosion Test—	
BRYAN POULSON	408
General Discussion—Historical Note on the Slow Strain Testing of	
Solder—R. S. TRESEDER	425
Summary	
Summary	431
Index	435

