Flammability and Sensitivity of Materials in

## Oxygen-Enriched Atmospheres

EIGHTH VOLUME

William T. Royals, Ting C. Chou, and Theodore A. Steinberg, editors

删

STP 1319

# Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Eighth Volume

William T. Royals, Ting C. Chou, and Theodore A. Steinberg, Editors

ASTM Publication Code Number (PCN): 04-013190-31



ASTM 100 Barr Harbor Drive West Conshohocken, PA 19428-2959

Printed in the U.S.A.

ISBN: 0-8031-2401-5

ASTM Publication Code Number (PCN): 04-013190-31

ISSN: 0899-6652

Copyright © 1997 AMERICAN SOCIETY FOR TESTING AND MATERIALS, West Conshohocken, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

#### **Photocopy Rights**

Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by the American Society for Testing and Materials (ASTM) provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923; Tel: 508-750-8400; online: http://www.copyright.com/.

#### **Peer Review Policy**

Each paper published in this volume was evaluated by two peer reviewers and at least one editor. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

To make technical information available as quickly as possible, the peer-reviewed papers in this publication were printed "camera-ready" as submitted by the authors.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM.

#### **Foreword**

This is the eighth in a series of Special Technical Publications produced by ASTM Committee G4 on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres. Unlike the seven preceding volumes of this series, the papers in the eighth volume were not derived solely from the Eighth International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Environments. A series of seminars was held in conjunction with the regular biannual Committee G4 meetings, beginning in 1995, from which eight of the 35 papers presented in this book originate.

This volume, the most voluminous of the series, was edited by symposium chairmen Ting C. Chou, with BOC Group Inc., Murray Hill, NJ; William T. Royals, with United Technologies-Pratt and Whitney, West Palm Beach, FL; and Theodore Steinberg, with the Mechanical Engineering Department at the University of Queensland, Brisbane, Queensland, Australia.

### Contents

| Overview—T. C. CHOU, W. T. ROYALS, AND T. A. STEINBERG                                                                                                           | 1  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Keynote Address                                                                                                                                                  |    |
| Oxygen Piping Code—Where Knowledge Becomes Practice: Keynote Address—ULRICH H. KOCH                                                                              | 5  |
| Failure Analysis and Safety                                                                                                                                      |    |
| Total Water Demand for Suppression of Fires in Hypobaric Oxygen-Enriched Atmospheres—H. D. BEESON, E. T. FORSYTH, AND D. B. HIRSCH                               | 17 |
| Inclusion of Oxygen Equipment Training in Workplace Basic First Aid Curricula—L. M. STARR                                                                        | 25 |
| Use of Oxygen-Enriched Mixtures in Recreational SCUBA Diving—Is the Public Being Informed of the Risks?—H. GABEL AND D. JANOFF                                   | 34 |
| An Overview of Fatigue and Other Metallurgical Failure Modes and Analysis at the Kennedy Space Center—S. J. McDANELS                                             | 42 |
| Failure of Stainless Steel Check Valve in Oxygen Service—J. J. RAGO                                                                                              | 53 |
| Failure of PTFE-Lined Flexible Hose in Oxygen Service—J. J. RAGO                                                                                                 | 58 |
| Component Design and Development or<br>Evaluation of Test Methods                                                                                                |    |
| Factors Affecting the Reproducibility of Upward Propagation Pressure Thresholds of Metals in Gaseous Oxygen—C. F. KEY, F. S. LOWERY, S. P. DARBY, AND R. S. LIBB | 71 |
| Design Strategies for Polymer-Lined Flex-Hose Distance/Volume Pieces—                                                                                            |    |
| A. J. SANTAY, I. D. BECKER, JR., AND B. L. WERLEY                                                                                                                | 93 |

| A 6000 psig Gaseous Oxygen Impact Test System for Materials and Components Compatibility Evaluations—B. NEWTON, A. PORTER, W. HULL J. STRADLING, AND R. MILLER       | 108 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Ultrasonic Measurement of the Regression Rate of the Melting Interface in Burning Metal Rods—T. A. STEINBERG AND M. VEIDT                                            | 122 |
| Ignition and Combustion of Metals                                                                                                                                    |     |
| Ignition Resistance of Hard (Type III) Anodized Aluminum to Particle Impact—E. T. FORSYTH AND J. M. STOLTZFUS                                                        | 137 |
| Configurational Effects on the Combustion of Several Alloy Systems in Oxygen-Enriched Atmospheres—D. JANOFF AND M. D. PEDLEY                                         | 147 |
| Promoted Ignition-Combustion Behavior of Alternative High Performance Engineering Alloys in Oxygen-Enriched Atmospheres—K. McILROY, R. ZAWIERUCHA, AND J. F. MILLION | 157 |
| Combustion Testing of Metallic Materials Aboard the NASA Johnson Space Center's KC-135—t. A. STEINBERG AND J. M. STOLTZFUS                                           | 170 |
| Influence of Alloying Additions on the Flammability of Nickel-Based Alloys in an Oxygen Environment—M. TAYAL, D. B. WILSON, AND J. M. STOLTZFUS                      | 189 |
| Flammability Limits of Stainless Steel Alloys 304, 308, and 316—B. L. WERLEY AND J. G. HANSEL                                                                        | 203 |
| Analysis of Metals Combustion Through Powder Production—D. B. WILSON, S. SIRCAR, S. HORNUNG, AND J. M. STOLTZFUS                                                     | 225 |
| Thermodynamics and Kinetics of Burning Iron—D. B. WILSON, T. A. STEINBERG, AND J. M. STOLTZFUS                                                                       | 240 |
| Modeling of Promoted-Ignition Burning: Aluminum—D. B. WILSON AND J. M. STOLTZFUS                                                                                     | 258 |
| Fundamentals of Metals Ignition in Oxygen—D. B. WILSON AND J. M. STOLTZFUS                                                                                           | 272 |
| Experimental Study of Flame-Spreading Processes Over Thin Aluminum Sheets—CL. YEH, D. K. JOHNSON, AND K. K. KUO                                                      | 283 |
| Flammability Tests of Miniature Brazed Aluminum Heat Exchangers in Liquid Oxygen—R. ZAWIERUCHA AND J. F. MILLION                                                     | 297 |

#### IGNITION AND COMBUSTION OF NONMETALS

| Oxygen Compatibility of Polymers Including TFE-Tetlon®, KEL-F® 81,<br>Vespel® SP-21, Viton® A, Viton® A-500, Fluorel®, Neoprene®, EPDM,<br>Buna-N, and Nylon 6,6—T. C. CHOU AND A. FIEDOROWICZ | 319 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Oxygen Compatibility of FKM Elastomers—v. J. D'IMPERIO AND B. L. WERLEY                                                                                                                        | 350 |
| Ignitibility in Air, Gaseous Oxygen, and Oxygen-Enriched Environments of Polymers Used in Breathing-Air Devices—D. HIRSCH, FY. HSHIEH, H. BEESON, AND C. BRYAN                                 | 359 |
| Combustion Testing of Non-Metallic Materials in Ambient and Oxygen-<br>Enriched Atmospheres—T. A. STEINBERG                                                                                    | 370 |
| Fuel Cell Elastomeric Materials Oxygen Compatibility Testing: Effect of 450 and 6200 kPa Oxygen—J. M. WALLER, S. D. HORNUNG, AND H. D. BEESON                                                  | 385 |
| Characterization of Polymers Found in an Oxygen Environment—<br>M. K. WILLIAMS AND P. D. FAUGHNAN                                                                                              | 403 |
| Relative Performance of Elastomeric Materials in the Seal Configuration Test Apparatus—M. J. YENTZEN, B. A. POWELL, AND S. JORDAN                                                              | 411 |
| Miscellaneous                                                                                                                                                                                  |     |
| Ignitibility of Advanced Composites in Liquid and Gaseous Oxygen— H. D. BEESON, FY. HSHIEH, AND D. B. HIRSCH                                                                                   | 421 |
| Eliminating Bypass Valves in Selected Oxygen Systems—D. G. CASTILLO AND B. L. WERLEY                                                                                                           | 432 |
| Oil Migration on the Structured Packing by Evaporation and Recondensation During the Defrosting Operation in the Air Separation Unit—N. EGOSHI, H. KAWAKAMI, AND I. FUJITA                     | 445 |
| A Database For Metallic and Nonmetallic Materials Commonly Utilized in Oxygen Service—B. NEWTON, W. C. HULL, AND J. STRADLING                                                                  | 458 |
| Flammability of Intestinal Gases During Nitrous Oxide Anesthesia— G. W. SIDEBOTHAM, F. CANTELMI, D. M. STOFFA, E. FRIED, AND G. L. WOLF                                                        | 477 |