Glossary of Symbols

CCT	=	Center-cracked tension specimen.
CLWL	=	Crack-line wedge-loaded specimen.
COS	=	Crack-opening stretch.
СТ	=	Compact-tension specimen.
CVN	=	Charpy V-notch specimen.
EDM	=	Electrical-discharge-machine process.
LEFM	=	Linear-elastic fracture mechanics.
PTC	=	Partial-thickness-crack specimen.
RD	=	Rolling direction.
L-T	æ	Orientation of full-thickness crack stressed parallel to RD and propagating perpendicular to RD.
R-curve	=	Plot of K_R vs Δa , where $\Delta a \equiv \Delta a_{phy}$.
a	Ħ	Crack length; crack depth for PTC specimen.
acr	Ξ	Critical crack length for the onset of a particular event.
a	=	Effective crack length, including r
eII	=	Machined-notch crack length.
an	=	Initial crack length.
a, ^o	=	Physical or actual crack length.
aphy	=	Actual or physical crack length.
Tact ∆a	=	Increment of crack extension.
Δac	=	Critical increment of stable crack extension at
		fracture instability, a property of the R-curve.
r _p	=	Plane-stress plastic-zone radius at the crack tip.
rIp	=	Plane-strain plastic-zone radius at the crack tip.
ĥ	=	Hinge point, a distance measured from the load line, P.
В	=	Specimen thickness.
J-Integral	=	Path-independent integral of plastic strain-energy
		density surrounding the crack tip.
JIC	=	Critical J _I value at fracture under plane-strain
		conditions (analogous to G).
E	=	Modulus of elasticity.
G	=	Crack-extension force or strain-energy release rate.
GR	=	Resistance to crack extension measured in terms of G.
H	=	One half of CT specimen height.
K	=	Stress-intensity factor.
K	=	Critical K value at fracture under plane-stress
C		conditions.
Кт	-	Applied K value under opening-mode (Mode I) loading
Υ.		conditions.
KIc	=	Critical K _I value at fracture under plane-strain conditions.

K _{Icr}	=	A general critical K _I value corresponding to the onset
Кта	=	Value of $K_{T_{C}}$ measured under dynamic or impact loading
-10		conditions.
^K I,Gub	=	Greatest-upper-bound K_I value for plane-strain
¥.		conditions.
^K I,Lub	=	conditions.
Kr max	=	Nominal K_T value at fracture calculated using initial
i /man		crack length (a_0) and maximum load (P_{max}) on the basis
		of LEFM analysis.
К _Q	=	Questionable or invalid K _{IC} value based on 5 percent
		record.
K_	×	Resistance to crack extension measured in terms of K.
K KR.D	=	Plateau value of K _R from an R-curve.
ΔK_{f}	=	Stress-intensity range used in fatigue precracking.
P	=	Load or force.
Pmax	=	Maximum load in a fracture test.
R	n	Stress ratio used in fatigue precracking.
T V	_	Temperature.
v Va	_	Value of V measured at a distance $0.1576W$ from the
•1		load line, P, counter to the crack extension direction.
V _l abs	=	Absolute value of V ₁ .
v ₂	=	Value of V measured at a distance 0.303W from the load
		line, P, in the same direction as crack extension.
V_2 abs	=	Absolute value of V_2 .
(v1/v2/s	=	unloading conditions.
W	=	Specimen width.
o		Limit of plane-strain conditions at value of $\theta = 0.4$
а Х	_	Crack-opening stretch or crack-tip dislocation used
Ũ		interchangeably with COS.
ε	=	Strain.
Ê	=	Strain rate.
εzz	=	Through-thickness strain.
€BS	=	Back-surface strain measured on the free surface
		opposing the crack at a location that intersects with
6		the crack plane.
۲ys	=	Root radius of a machined notch tin
ρ Π	=	Stress: also, standard deviation in a statistical sense.
σn	=	Design stress; alternatively, the gross, uniform
D		tension stress applied to a CCT specimen remotely.
σ _{ys}	=	Yield stress.
σ_{zz}	=	Through-thickness stress (synonymous with "constraint").

Table I

Chemical Composition of A572 Steel Tested-Percent

0.006 <0.005 0.0031 QN 0 0.22 1.21 0.014 0.022 0.25 0.021 0.014 0.020 0.005 0.070 <0.005 0.046 0.050 0.012 <0.01 ср С * * * Z A1** 0.023 A1* 0.014 0.029 0.010 0.049 <0.005 0.021 ч Н ⊳ о W Ч Ϊ 0.21 1.20 0.010 0.023 0.24 0.026 ບັບ Si S ሳ ЧN U Strength, Yield ksi 50 62

* Acid-soluble.

** Total.

*** Kjeldahl determination.

ND - Not determined.

Conversion Factor:

 $1 \text{ ksi} = 6.895 \text{ MN/m}^2$

Table II

Mechanical Properties of A572 Steel Tested

cch	tion,	н 0	47	~ ~
py V-Not	Absorpt ft-1b	+40 F	28 11	1 4 10
Char	Energy	+70 F	38 26	21 16
ction rea, %	At	Fracture	69.0 65.1	56.3 50.3
Reduc of Al	At Maximum	Load	ND 15.1	ND 14.0
gation Ench, %	At	Fracture	30.0 27.0	26.0 23.4
Elong in 1	At Maximum	Load	ND 14.0	ND 13.4
	Tensile Strength.	ksi	83 92	81 94
	Yield Strength	ksi	50 62	50 63.5
		Orientation	Longitudinal Longitudinal	Transverse Transverse
	Yield	strengtu, ksi	50 62	50 62

Conversion Factors:

1 ksi = 6.895 MN/m²
1 inch = 25.4 mm
1 ft-lb = 1.36 J

Table III

Overall R-Curve Study

σys, ksi	Specimen Thickness, Inches	No. of <u>Spec</u>	Spec Type®	Test Temp	peratu	res
50	B = 1.5	3	21	$T = \Theta 40 F$,	+40 F	+ +72 F
"	99	3	41	"		11
"		4	40	"	17	11
"		4	70	"		II
	$B = 0.5^{***}$	4	21	"	11	"
	"	4	4T	**	"	11
		2	2 Total			
62	B = 1.5	2	70	$T = \ominus 40$	F + +	72 F
			2 Total			

- Ø 2T and 4T specimens tested under "load-control" conditions, 4C and 7C specimens tested under "displacement-control" conditions.
- At least one specimen for each group of 3 or 4 was tested at each of the (nominal) test temperatures cited.
- ** The cited 4T and 4C specimens provided an "overlapping" condition for each of the two different test techniques.
- All B = 0.5-inch specimens were taken from that portion of the plate closest to the center after the original 1.5-inch plate thickness was split.

^t 1, max, ++++ ksi /inch	-	110.1	122.8	91.3	143.0	102.8	180.2	124.0	140.1	177.2	170.5	54.8	102.0	161.3	208.5		113.6	184.8		124.5	129.8	125.8	125.3	146.5	132.6	161.00	179.3
V1, frac, +++ 1 inches		0.047	0.114	0,034	0.075	0.044	0.247	0.085	0.126	0.476	0.273	160.0	0.058	0.111	0.599		0.068	0.326		0.202	0.222	0.258	0.329	0.077	0.251	>>1.527	>1.748
Vl,mex,++ inch	= 50 ksi)	0.047	0.114	0.034	0.075	0.044	0.247	0.085	0.126	0.334	0.155	0.031	0.058	111.0	0.262	s = 62 ksi	0.068	0.200		0.158	0.192	0.198	0.193	0.077	0.251	0.290	0.313
Pfrac, pounds	e 50 (d _{ys}	39,900	45,850	34,650	88,000	55,9001)	114,500	66,400 ²⁾	77,400 ²⁾	97,500	84,400 ²⁾	41,600 ¹⁾	73,600 ¹⁾	116.200 ¹⁾	<86,900 ²)	sed to ^d y	80,100 ¹⁾	123,400 ²⁾	: = <u>50 kai</u>	15,150	16,150	15,400	13,700	30,700	37,700	<10,200 ³⁾	3,3004)
Pmax, pounds	A572 Grad	39,900	45,850	34,650	88,000	55,9001)	114,500	66,4002)	77,400 ²⁾	106,500	92,900 ²⁾	41,600 ¹⁾	73,600 ¹⁾	116,200 ¹⁾	159,300 ²⁾	572 Proces	80,100 ¹⁾	134,100 ²⁾	de 50 (Gys	15,200	16,200	15,750	15,300	30,700	37,800	38,700	37,700
KBSY, + ksi /inch) of ASTM	74.3	70.3	69.7	121.3	112.8	114.8	102.1	104.5	106.9	101.2	149.6	147.8	135.8	135.2	of ASTM A	178.8	167.8	f ASTM Gra	74.4	70.2	70.3	67.8	122.6	111.8	112.8	111.2
KMC,### ksi /inch	1/2 Inches	57.4	54.0	53.3	89.4	85.7	83.8	78.0	78.3	79.5	77.0	112.8	112.2	103.2	102.3	/2 Inches)	136.0	126.4	/2 Inch) o	57.4	53.9	54.0	52.3	90.2	82.3	82.3	81.6
KI, lub, ## ksi /inch	ns (B = 1-	42.8	39.6	38.9	43.0	43.0	39.6	39.6	39.6	38,8	38.8	43.1	43.0	39.6	38.8	s (B = 1-1,	52.5	48.2	ens (B = 1	24.7	22.9	22.9	22.5	24.9	22.9	22.5	22.5
, ^d ys,# ksi	Specime	55.4	51.3	50.3	55.6	55.6	51.2	51.2	51.2	50.2	50.2	55.7	55.6	51.2	50.2	Specimens	67.8	62.2	s Specim	55.3	51.3	51.3	50.3	55.6	51.2	50.2	50.2
Test lemperature F	-Thickness	-35	+34	+67	-42	-40	+38	+40	+40	+72	RT	- 44	-40	+40	RT	Thickness	-40	RT	ubthicknes	-32	+32	+32	+66	-40	+39	+72	+72
B,*** T inches	A. Full	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	Full-	1.5	1.5	с. 2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Specimen Size and Type	~1	21	2T	21	4T	4	4T	40	40	4 T	40	70	70	70	70	B.	70	70		2Т	2T	2T	2T	4 T	4T	4T	4 T
Specimen No.**		7-1	7-2	7-3	7-2®	A7-4	7-36	A7-1	A7-3	7-16	A7-2	A572~1	A7-3	A7-4	A572-2		A7-1	A7-2		7-3	7-2	7-1	7-4	7-4®	۲- عود - ۲	 2@	7-1@
Item No.		-	2	m	4	ß	9	2	8	6	9	11	12	13	14		1.5	16		17	18	19	20	21	22	23	24

(Continued)

Summary of Test Conditions, Specimen Measurement Capacities, and Nominal Fracture Behaviors*

Table IV

-
-
·۷
Ð
Ξ.
Ĉ.
- 73
÷
E
0
_
£3
9
g
<u>ບ</u>
2
5
5
200
e IV (C
le IV (C
ble IV (C
able IV (C
Table IV (C

- * All specimens were of the compact-tension (CT) with (H/W) = 0.600; all 2T and 4T specimens were tested (by U. S. Steel Corporation) under load-control conditions, and all 4C and 7C specimens were tested (by Armco Steel Corporation) under displacement-control conditions.
- ** All specimen numbers with an "A" prefix (4C or 7C specimen types) were tested (by Armco Steel Corporation) under displacement-control. conditions.
- *** Nominal specimen thickness
- # Oys = yield-strength (0.2% offset) values interpolated at the test temperatures shown using actual measurements made (as a function of temperature) under "static" test conditions (& ~ 10⁻⁵ sec⁻¹).
 - ## KI, lub = plane-strain measurement capacity (least-upper-bound), given as: KI, lub = $\sigma_{ys} \left(\frac{B}{2.50}\right)^{1/2}$

KWC = plane-stress measurement capacity (first conservative value - corresponding to ^{GN} = ^Gys at the crack tip), given as:

MC =
$$\sigma_{YS} \cdot W^{1/2} \left(\frac{f(X)}{2(2+X)} \right)$$
 where $X = \left(\frac{a}{W}\right)$ and $f(X) = f\left(\frac{a}{W}\right)$ for the CT specimen.

+ KBSY = plane-stress measurement capacity (second conservative value - corresponding to ^{ON} # ^Oys at the back surface), given as:

$$5SY = -\sigma_{YS} \cdot W^{1/2} \left(\frac{f(X)}{2(1+2X)} \right) \text{ where } X = \left(\frac{a}{W}\right) \text{ and } f(X) = f\left(\frac{a}{W}\right) \text{ for the CT specimen.}$$

++ V_1 , max = V_1 value at maximum load (@ P = P_{max}) in the P- V_1 record

+++ V1, frac = V1 value at the unstable fracture load (@ P = P_{frac}) in the P-V1 test record.

- The V₁ values for each of the two previous footnotes were either measured directly (in the case of the <u>10</u> 4C and 7C specimens tested under deflection-control conditions) or interpolated values calculated assuming "rigid-body behavior" between the Note:
 - v_1 and v_2 (measured) clip-gage values (in the case of the 14 2T and 4T specimens tested under load-control conditions).
- KI,max * nominal KI value at maximum load (P = P_{max}), calculated on the basis of the original specimen dimensions without any corrections to the original (physical) crack length (a₀) for plasticity (r_p) or stable crack extension (Δa), given as: ++++ KI, max

$$K_{\mathbf{I}} = \begin{bmatrix} \frac{P}{B} \cdot \frac{f}{W\mathbf{I}/2} \\ \frac{P}{B} \cdot \frac{W\mathbf{I}/2}{W\mathbf{I}/2} \end{bmatrix}$$

- 🕲 Specimen was tested using the "load-total unload" procedure, with various physical measurements of the specimen being made intermediately under no-load (P = 0) conditions (U. S. Steel procedure).
- 1) Load, P, was calculated using a_{eff} [based on $\left(\frac{Vlabs}{V2abs}\right)$ ratio] and the <u>single-compliance calibration</u> relationship $\left[\left(\frac{EBV1}{P}\right) vs\left(\frac{a}{W}\right)\right]$.

²⁾ Load, P, was <u>calculated indirectly</u> using a_{eff} and K_R in combination with the elastic stress-intensity relationship, $K_{T} = \begin{bmatrix} p & f(\frac{R}{2}) \\ B & WL/2 \end{bmatrix}$. The a_{eff} value was calculated using the <u>double-compliance calibration</u> relationship $\left[\begin{pmatrix} V_{1} \\ V_{2} \end{pmatrix}$ vs $\left(\frac{A}{W} \right) \right]$ as a_{eff} = $a_{phy} + A\left(\frac{K_{T}}{7y_{S}} \right)^{2}$, where A is a constant determined at $\varepsilon_{BS} = \varepsilon_{YS} - that$ is, when a_{eff} and a_{phy} are both known $\left(\frac{V_{2}}{V_{2}} \right)$ vs $\left(\frac{A}{W} \right) \right]$ as aeff = $a_{phy} + A\left(\frac{K_{T}}{7y_{S}} \right)^{2}$, where a is a constant determined at $\varepsilon_{BS} = \varepsilon_{YS} - that$ is, when a<u>eff</u> and a_{phy} are both known $\left(\frac{V_{2}}{V_{2}} \right)$ vs $\left(\frac{A}{W} \right) = \left(\frac{V_{1}}{2} \right)^{2}$, where a simultaneously with the use of the $\left(\frac{V_{1}}{V_{2}} \right)$ and $\left(\frac{V_{1}}{V_{2}} \right)_{S}$

since a_{eff} cannot be determined directly using $\left(\frac{V_{labs}}{V_{2abs}}\right)$ for $\epsilon_{BS} >> \epsilon_{ys}$.

(Continued

Table IV (Continued)

- ³⁾ P_{frac} [≅] 6,200 pounds, which occurred under increasing test-machine crosshead velocity and therefore at a crack-tip strain rate which is more rapid than that for "static" testing (č >> 10⁻⁵ sec⁻¹).
- ⁴) $P_{frac} = 3,300$ pounds, which occurred under increasing test-machine crosshead velocity and therefore at a crack-tip strain rate which is more rapid than that for "static" testing ($\dot{c} >> 10^{-5} \sec^{-1}$).

Conversion Factors:

1 inch = 25.4 mm F = 9/5 C + 32 $\frac{1 \text{ ksi}}{1 \text{ ksi}} = 6.895 \text{ MN/m}^2$ 1 ksi /inch = 1.099 MMm⁻³/2 1 pound = 4.448 N

	K _c ,### 81 /1nch		116	216	>87++	154	102	314	155	195	445	318	57	103	161	>477+++		121	365		316	273	313	308	150	305	>503X	>3800
	∆amax,## <u>inches k</u>		0.044	0.034	0	o	0	0.128	0.020	0.125	0.477	0.250	o	0.020	0.120	>0.868+++		0.030	0.480		æ	0.127	0.105	0.399	0.023	0.216	>1.430	>0,922
Analysis Technime	for Calc of KR,max		8 8	cos	cos	SOS	LEFM	cos	cos	cos	cos	cos	LEFM	ILEFM	LEFM	cos	181	LEFM	cos		cos	SOS	SOS	cos	cos	cos	cos	cos
	KR, max, # ksi /inch	<u> </u>	115.7	216.4	87.4++	154.1	101.9	313.7	154.6	194.5	445.0	318.3	56.8	103.4	190.5	>477.3***	0y8 = 62 k	121.4	364.5	= 50 ksi)	315.5	273.0	312.6	308.4	149.6	304.8	>502.8	>379.60
ed Under Frol ^{***}	Mismatch Åa, inch	3rade 50 (0	ı	ı	ł	ı	-0.080	I	060.0-	0.010	1	-0.050	o	-0.100	0.070	0	rocessed to	-0.040	0.020	je 50 (⁰ ys	ı	1	I	ı	ı	i	ı	t
ens Testo tion-Cont	ao, inches	TM A572 (1	ı	ł	ı	3.370	ł	3.440	3.440	ı	3.430	5.750	5.730	5.910	5.720	M A572 P1	5.820	5.740	A572 Grad	ı	ı	ı	ı	ı	ı	•	ı
Specim	Meas ao, inches	s) of AS	ı	ı	ı	ı	3.450	ı	3.530	3.430	1	3.480	5.750	5.830	5.840	5.720) of AST	5.860	5.720	of ASTM	ı	1	1	ı	ł	ı	ł	ı
ested trol ^{***}	Mismatch Δa, inch	-1/2 Inche	-0.064	-0.011	-0.111	-0.191	ı	-0.181	ı	ı	-0.183	ı	ł	1	ı	I	L/2 Inches	ı	ı	1/2 Inch)	0.120	0.037	0.103	-0.161	-0.159	-0.205	-0.145	-0.160
cimens Te Load Cor	DC ao, inches	s (B = 1	1.720	1.728	1.603+	2.797	1	2.706	ı	ı	2.894	ı	ı	•	ł	ı	(B = 1-)	ı	ı	ns (B ≡]	1.895	1.775	1.838	1.612	2.786	2.771	2.726	2.773
Spec Under	Meas ao, inches	Speciment	1.784	1.739	1.714	2.988	1	2.887	1	1	3.077	ŀ	ı	I	ı	1	pecimens	ı	I	s Specime	1.775	1.738	1.735	1.773	2,945	2.976	2.871	2.933
	Test Temperature, F	11-Thickness	-35	+34	+67	-42	-40	+38	+40	+40	+72	RT	-44	40	+40	RT	1-Thickness 5	-40	RT	Subthicknes	-32	+32	+32	+66	-40	+39	+72	+72
	B,**	A. Fu	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	B. Ful.	1.5	1.5	Ů	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Specimen Size and Type		2T	2T	2т	4T	4	4T	4	4	4T	4	70	75	70	70		70	70		21	21	2 T	2T	41	4T	4T	4T
	Specimen No.		1-1	7-2	7-3	7-2	A7-4	7-3	A7-1	A7-3	7-1	A7-2	A 572-1	A7-3	A7-4	A 572-2		A7-1	A7-2		7-3	7-2	7-1	7-4	7-4	7-3	7-2	7-1
	Item No.		ч	2	m	4	2	9	7	œ	6	2	H	12	13	14		15	16		17	18	19	20	51	22	23	24

(Continued)

Summary of R-Curve and Kc Test Results for ASTM A572 Steels*

Table V

- * All specimens were of the compact-tension (CT) type [with (R/W) = 0.600] and were of the same RW crack orientation (a through-thickness crack subjected to stresses parallel to the rolling direction, R, and propagating across the orthogonal plate width direction, W). In addition, all specimens were tested under "static" crack-tip strain-rate conditions (c = 10⁻⁵ sec⁻¹), the 2T and 4T specimens were tested under load-control conditions, and all 4C and 7C specimens were tested under deflection-control conditions.
- ** Nominal specimen thickness see Table III for precise specimen measurements (W, 2H, B and a).
- *** <u>Meas ao</u> = initial specimen fatigue-crack length obtained as the average of physical measurements made through the specimen thickness.
- $\frac{DC}{NO} = 1$ initial specimen fatigue-crack length obtained from the <u>Double-Compliance</u> (DC) procedure using the initial $\left(\frac{V_1}{V_2}\right)_{a}$ ratio.

Mismatch Δa = the numerical difference between the Meas a_0 and DC a_0 values

- # KR, max = the highest KR value obtained in the test prior to catastrophic crack extension and calculated using either the COS or LEFM analysis technique listed in the next column; in the COS technique, the KR, max value was calculated using the final $\begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$ ratio prior to fracture.
 - Δ_{max}^{a} = the amount of stable crack extension occurring in the test prior to catastrophic extension of the crack at the Kg,max value, thus, $\Delta_{max}^{a} = a_{o}$, where a_{o} and a_{f} are the initial and final a_{phy} values, respectively, determined using the initial and final (V₁/V₂) s ratios in combination with the double-compliance (DC) calibration relationship **

$$\left[\left(\frac{v_1}{v_2} \right) v \mathbf{s} \left(\frac{\mathbf{a}}{\mathbf{w}} \right) \right] .$$

- ### K_c = the K_c value observed at instability for the specified test conditions (including T, \dot{c} , B, and a_0).
- + Estimated value only due to premature fracture prior to the scheduled first unloading step.
- ++ Value based on an estimated (V1/V2)_S ratio an approximation necessary due to premeture fracture prior to the scheduled first unloading step. Premature fracture resulted in part from a more rapid crack-tip strain rate (č) than normal for "static" loading, thus, the K_c value observed is much lower than would be expected normally on account of a slightly cooler temperature (67 F compared with 72 F) and a shorter crack length (2T specimen with a₀ = 1.714 inches).
- +++ The KR,max' damax' and Kc values cited are <u>minimum values</u> since they correspond to the point at which the allowable deflection capability (physical limit) was exceeded (without specimen failure) in the deflection-control testing machine.
- (a) For an unknown reason no crack extension ($\Delta_{phy} = 0$) was indicated at fracture by the V1 vs V2 test record, even though a stable extension of $\Delta_{aphy} = 0.125$ inch actually occurred on the fracture surface (see Figure 16); consequently, an initial negative error of 7.5 percent in Kg at low load levels due to a Mismatch Aa = +0.120 inch was fully cancelled at Kg = Kg,max by an equivalent positive error of 7.5 percent KR arising from the actual crack extension, Δa_{phy} = 0.125 inch.
- 2) the occurrence of out-of-plane specimen buckling, and 3) concomitant misalignment of the clip-gage holders attached to the specimen. The onset of erratic clip-gage behavior (V1 and V2) and occurred well before complete (catastrophic) specimen fracture. The erratic clip-gage stable crack extension that took place on the fracture surfaces of each specimen prior to catastrophic crack extension, danax = 3.471 and cited Δ_{amax} values (1.430 and 0.920 inches for specimens 7-2 and 7-1, respectively) can be seen to be only a small fraction of the total The KR, max, Δ^{a} max, and K_c values cited are minimum values of behavior since they correspond to the highest values measured prior to the behavior resulted, specifically, from a combination of circumstances including 1) exceeding the available clip-gage linearity range, 3.954 inches for specimens 7-2 and 7-1, respectively (Figure 17). ۲

1 inch = 25.4 mmConversion Factors:

l ksi <u>/inch</u> = 1.099 MMm^{-3/2} $I \text{ ksi} = 6.895 \text{ MN/m}^2$ F = 9/5 C + 32

Tests
Specimen
Duplicate
for
Results
Мo
of
Analysis

Item No.	No. of Specimens Tested	Specimen Size and Type	B, inches	Test Temperature, F	Kc, ksi /inch	Average Kc and Range ksi /inch	Range of ^K c Results,* percent
7 & 8	2	4C	1.50	+40	155 195	175±20	±11.4
11&12	2	7C	1.50	-40	57 103	80±23	±28.8
18&19	7	2T	0.50	+40	273 313	293±20	+ + 9 *
23&24	2	4T	0.50	+72	>503 >380	>442±62	±14.0

* Range expressed of percent relative to the average K_{C} value cited in the previous column.

Conversion Factors:

1 inch = 25.4 mm $\frac{F}{F} = 9/5 \text{ C} + 32$ $1 \text{ ksi /inch} = 1.099 \text{ MNm}^{-3/2}$

Table VI

Table VII

Analysis of K_c Results for Different Test Procedures

Item No.	Specimen Size and Type*	Nominal Test Temperature, F	K _C , ksi √inch	Extent to Which K _C for 4T Exceeds That for 4C**
4	4 T	-40	154	+51.0%
5	4C	-40	102	-
6	4 T	+40	314	+79.5%
7	4C	+40	155	-
8	4C	+40	195	-
9	4 T	+72	445	+40.0%
10	4C	+72	318	-

- * 4T specimens tested by load-control test method. 4C specimens tested by deflection-control test method.
- ** Expressed as a percentage of the listed (or average) K_C value for the corresponding 4C specimen.

Conversion Factors:

 $\frac{F}{1 \text{ ksi } \sqrt{\text{inch}} = \frac{9}{5} \text{ C} + 32}$

Table VIII

Comparisons of Studies Conducted to Evaluate K_C Behavior Measured Using the Load-Control and Displacement-Control Test Techniques

	Earlier Studies by Heyer & McCabe*		Present Study**
Materials	High-Strength Aluminum & Titanium Alloys	VS	Low-Strength Steel
Material thickness, inches	B <u>≤</u> 0.066	vs	B = 1.50
K _C Repeatability	Excellent (±5%)	vs	Fair (±15 to ±30%)
Strain-rate Sensitivity (on K _C)	NIL	vs	High
Method of Analysis @ K _C	LEFM	vs	COS

- * <u>Complete Equivalence</u> of K_C behavior demonstrated in tests conducted with load-control and displacement-control testing techniques.
- ** K_C for load-control = 40% to 80% higher than K_C for displace-ment-control.

Item No.	Specimen Size	Nominal Test Temperature, F	K _C for B = 1.50 inch Specimen, ksi √inch	K _C for B = 0.50 inch Specimen, <u>ksi √inch</u>
		A. 2T Spec	imen Size	
1	2т	-40	116	-
17	2 T	-40	-	316
2	2 T	+40	215	-
18	2т	+40	-	273
19	2т	+40	-	313
3	2 T	+72	>87+	-
20	2т	+72	-	308
		B. 4T Spec	imen Size	
4	4 T	-40	154	-
21	4 T	-40		150
6	4 T	+40	314	-
22	4 T	+40	-	305
9	4 T	+72	445	-
23	4 T	+72	-	>503+
24	4 T	+72	-	>380+

Effects of Thickness (B = 1.5 inch vs B = 0.5 inch) on K_C Behavior from Load-Control Tests on 50-ksi Yield-Strength A572 Grade 50 Steel

+ See appropriate footnote for detailed behavior in Table V.

Conversion Factors

l inch = 25.4 mm. F = 9/5C + 32.l ksi $\sqrt{inch} = 1.099 \text{ MNm}^{-3/2}.$

Table IX

Summary of CVN Test Results From Selected CT Specimens of A572 Steel

	E4		ı	17.0	9.0	7.0	ı	5.5	6.0	5°2	2.5	18.0*	18.0#	
	-40		1	12.0 1	5.0	2.5	ı	3.5	3.0	1	3.5	16.0*	10.0#	
			0.0	1	1	ł	23.0	1	1	6.3	ŀ	35.0	28.0	
t-1b	ы 0		15.0	ł	1	I	I	I	ı	1	ı	I	1	
on, f			0.0	I	ı	ı	24.0	ı	I	1	ı	25.0	29.0	
orpti			26.0	35.0	30.5	29.0	26.0	38.5	39.5	20.5	32.0	32.0	33.0	
y Abs	40 F		21.0	ŧ	ı	ł	30.0	ı	ł	ı	I	ı	ł	
Energ	1+	l	27.0	49.0	32.0	42.0	26.0	32.0	40.0	14.5	25.0	33.0	42.0	
CVN			53.0	44.5	52.0	38.0	I	60.5	54.0	42.0	41.0	1	ł	
	նել		37.0	56.0	53.5	47.0	56.0	47.0	74.0	54.0	30.0	ı	1	
	+72		45.0	38.5	38.0	41.0	41.0	51.0	47.5	43.5	45.5	47.0	52.0	
			45.0	49.5	45.0	50.0	41.0	42.0	47.0	51.5	43.0	60.0	60.0	
К _С .	ksi <u><i>inch</i></u>		>87	102	155	195	445	318	57	103	191	316	150	
Test Mperature,	F		+67	-40	+40	+40	+72	RT	-44	-40	+40	-32	-40	
B. Té	inches		1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	0.50	0.50	
Specimen Size and	Type		2T	4C	4 C	40	4 T	40	7C	70	70	2T	4 T	
Specimen	No.		7-3	A7-4	A7-1	A7-3	7-1	A7-2	A572-1	A7-3	A7-4	7-3*	7-4#	
Ttem	No.		m	س	~	8	6	10	л Ц	12	13	17	21	

m	7-3	2T	1.50	+67	>87	46.0 44.0 37.0 52.0 29.0 24.0 28.0 12.0 16.0 12.0	ı	ı
S	A7-4	4C	1.50	-40	102	38.0 31.5 42.0 37.5 38.5 - 27.0	6.5	10.0
2	A7-1	4C	1.50	+40	155	39.5 31.0 42.0 38.5 23.5 - 25.5	0.5	3.5
8	A7-3	40	1.50	+40	195	37.0 33.5 38.0 34.5 31.5 - 21.0	0	4.0
6	7-1	4T	1.50	+72	445	41.0 38.0 47.0 - 24.0 27.0 27.0 21.0 - 21.0	ı	ł
10	A7-2	40	1.50	RT	318	35.0 44.0 38.0 48.0 24.5 - 29.0	2.0	0.5
11	A572-1	70	1.50	-44	57	39.040.558.041.033.0 - 29.0	0	1.0
12	A7-3	70	1.50	-40	103	41.0 36.0 41.5 35.0 13.0 - 15.0	1.0	1.5
13	A7-4	70	1.50	+40	191	33.0 34.0 29.0 39.5 20.0 - 26.0	0	1.0
17	7-3*	2T	0.50	-32	316	51.040.0 31.0 - 32.024.0 - 32.01	14.0 [*]	15.0
21	7-4#	4T	0.50	-40	150	50.045.0 39.0 - 33.025.0 - 24.0]	10.0	15.0#

Note: * Additional results at -80 F were CVN energy = 6.0 and 4.0 ft-lb with corresponding LE = 3.0 and 2.0 mils. # Additional result at -80 F was CVN energy = 7.0 ft-lb and LE = 3.0 mils.

 $\frac{\text{Conversion Factors:}}{1 \text{ inch} = 25.4 \text{ mm}}$ $\frac{F}{1 \text{ ksi } \sqrt{\text{inch}} = 1.099 \text{ Mm}^{-3}/2$ 1 ft-lb = 1.36 J 1 mil = 0.0254 mm

Table X

Table XI

Summary of Static KIc Tests* on A572 Grade 50 (0ys=50 ksi) Steel

Essentially Essentially Comments Invalid Invalid Invalid Invalid Invalid Valid Valid Valid valid valid Valid Valid Valid Valid ۱ KIC, ksi ⁄inch 32.3 25.7 31.2 36.2 28.9 38.3 63.8 58.5 44.8 >38.0 >51.5 >49.0 >43.2 >39.9 1 KI,max,+ ksi ⁄inch 32.3 26.2 31.2 28.9 38.3 63.8 58.5 44.8 117.0 113.3 36.2 105.1 74.2 1.96 KI,Gub 0.19 0.16 0.26 0.32 0.28 0.39 0.65 0.96 1.08 1.14 1.06 0.69 0.94 0.51 MO O I KQ, ksi /inch 73.6++ 71.9⁺⁺ 74.2++ 63.4⁺⁺ 76.5++ 36.2 28.9 32.3 25.7 31.2 38.3 63.8 58.5 44.8 *** KI,Gub *** ksi /inch Specimen Measurement 77.5 68.3 81.5 63.1 60.1 Capacities KI,Lub,** KI,Gut ksi /Inch ksi / 98 166 168 122 114 104 6 93 90 88 i 51.5 49.0 43.2 39.9 38.0 105 106 77 72 66 62 59 56 57 1 σys, ksi 101 94 87 138 138 81 75 74 64 57 52 67 ī Temp, Test -320 -240 -200 -180 -165 -156 -149 -120 -104 -55 + +75 E4 I Spec 7-13 7-10 No. 7-11 7-12 7-8 7-3 7-4 7-9 7-8 7-5 7-7 7-6 7-2 1 Item No. 11214 1 Cl Cl 4 Cl Cl L ω σ Ł

24.0 inches [S/W = 4.0/1]; nominal specimen dimensions: n span * 3-Point bend specimens:

11 11 11

b B K

6.00 inches
1.47 inches
2.90 inches

(Continued)

** Least-upper-bound measurement capacity, given as $K_{I,Lub} = \sigma_{ys} \left(\frac{B}{2.50}\right)^{1/2}$.

Table XI (Continued)

*** Greatest-upper-bound measurement capacity, given as $K_{I,Gub} = \sigma_{YS} \left(\frac{B}{1.00}\right)^{1/2}$.

- ⁺ Nominal K_I value at maximum load (P = P_{max}) calculated on the basis of LEFM and the original specimen dimensions, without any plasticity corrections to the original crack length, a.
- ++ KQ value reflects severe KI-suppression effects due to grossly inadequate specimen dimensions.

Conversion Factors:

C = 5/9(F - 32) $1 \text{ ksi} = 6.895 \text{ MN/m}^2 = 6.895 \text{ NN/m}^2$ $1 \text{ ksi } \sqrt{1\text{nch}} = 1.099 \text{ MNm}^3/2$ 1 thch = 25.4 mm

	Inval Test	lid K _{IC} Results	Estimated ksi	K _{IC} Values, √Inch	
Test Temp	K _Q , ksi vinch	$\frac{1}{K_{O}}$ $\left(\frac{K_{O}}{K_{I,Gub}}\right)$	From K _I -Suppression Effect*	From J-Integral**	
⊖ 120	F 76.5	0.94	1480	100-130	
0 104	F 74.2	0.96	1480	-	
0 55	F 73.6	1.08	148+	-	
+7	F 71.9	1.14	148 ⁺	-	
+75	F 63.4	1.06	148+	160-200	
* <u>Ki</u>	c <u>≅</u> 2.0 Ko	$e \left(\frac{K_Q}{K_{I,Gu}}\right)$	$\frac{1}{b} = 1.00$ wh	ere KI,Gub = o	$ys\left(\frac{B}{1.0}\right) 1/2$
:κ _Ι	c = 2 x 74 =	148 ksi √inch	e T =	-80 F	
** "0	ne-shot" J _{IC}	equation.			

Table XII

Fracture Behavior of A572 Grade 50 Steel ($\sigma ys = 50 ksi$)

Table XIII

	Loading Condiitons	(ε <u>~ 10</u> -	5 sec-1)
			Minimum acr for
	Minimum		Infinite CCT Spec*
Temperatur	ce, K _C ,	^ø ys,	$0 \sigma_{\rm D} = 3/4 \sigma_{\rm YS},$
F	<u>ksi_√inch</u>	<u>ksi</u>	inches
Α.	For $B = 1 - 1/2 - Inch$	-Thick Pl	ate and $\sigma_{ys} = 50$ ksi
-40	57**	56	0.58 (180)**
+40	155	51	5,22
+72	318	50	22.9
B	For $B = 1/2 - Inch - T$	bick Plat	e and $\alpha v e = 50$ kei
<u></u>		<u>Mitok i iuc</u>	
-40	150	56	4.06
+40	273	51	16.2
+72	>380	50	>32.7
<u>c.</u>	For $B = 1-1/2-Inch$	-Thick Pl	ate and $\sigma_{\rm ys}$ = 62 ksi
-40	121	68	1.80
+72	365	62	19.6
* For a	an infinite center-	cracked t	ension (CCT) specimen:
		$K = \sigma \sqrt{\pi a}$	
Rearr	canging (1): : a _{cr}	$= \frac{1}{\pi} \left(\frac{K_{\rm C}}{\sigma_{\rm D}} \right)$) ²
	For		
and I	σD	= 3/4 σ _{ys}	
we ge	et		2
-	$a_{cr} = \frac{16}{9\pi} \left(\frac{K}{2} \right)$	$\left(\frac{c}{c}\right)^2 = 0$	$\frac{1}{566} \left(\frac{K_{\rm C}}{0 {\rm ve}}\right)^2$
		ys/ v	

Summary of Minimum Plane-Stress Fracture Toughness for Two Thicknesses of A572 Grade 50 Steel Under Static Loading Condiitons ($\varepsilon \simeq 10^{-5} \text{ sec}^{-1}$)

** If the minimum representative fracture toughness is taken to be $K_C = 100$ ksi \sqrt{inch} ; The corresponding value of critical flaw size would be $a_{CT} = 1.80$ inches.

Conversion Factors:

$$F = 9/5 C + 32$$

1 ksi $\sqrt{inch} = 1.099 MNm^{-3/2}$
1 ksi = 6.895 N/mm² = 6.895 MN/m²
1 inch = 25.4 mm

FIG. 1—Basic principle of R-curves for use in determining K_c under different conditions of initial crack length, a_u.

FIG. 2—Schematic of procedure for measuring δ_{ct} or cos at the actual crack tip (σ_{qct}) relative to applied load level (K₁) under plane-stress conditions.

FIG. 3-CT specimens used for load-control and displacement-control tests.

FIG. 4—*R*-curve and K_c results of full-thickness (B = 1.5 in.) specimens of A572 Grade 50 steel tested at $-40^{\circ}F$.

FIG. 5—R-curve and K_c results for full-thickness (B = 1.5 in.) specimens of A572 grade 50 steel tested at $+40^{\circ}F$.

FIG. 6—*R*-curve and K_c results for full-thickness (B = 1.5 in.) specimens of A572 grade 50 steel tested at $+72^{\circ}F$.

FIG. 7—*R*-curve and K_c results for full-thickness (B = 1.5 in.) specimens of A572 steel processed to 62-ksi strength level at two different temperatures.

FIG. 8—Summary of K_c results for full-thickness (B = 1.5 in.) specimens of A572 grade 50 steel and A572 steel processed to 62-ksi strength level.

FIG. 9—Fracture surfaces of full-thickness (B = 1.5 in.) 2T CT specimens of A572 grade 50 steel tested under load-control conditions using an essentially monotonic loading sequence (Armco procedure).

FIG. 10—Fracture surfaces of full-thickness (B = 1.5 in.) 4T CT specimens of A572 Grade 50 steel tested under load-control conditions using a total unload/reload loading sequence (U. S. Steel procedure).

FIG. 11—R-curve specimens of A572 Grade 50 steel tested at ambient temperature (~72°F). The 2T and 4T specimens were tested to fracture under load-control conditions, and the 7C specimen was tested to the limit of available capacity under displacement-control conditions. Note: $\Delta a = a_f - a_0 \approx 0.50$ in. on the specimen surface for the 7C specimen at the end of the test.

FIG. 12—*R*-curve and K_c results for subthickness (B = 0.5 in.) specimens of A572 Grade 50 steel tested at -40° F.

FIG. 13—R-curve and K_c results for subthickness (B = 0.5 in.) specimens of A572 Grade 50 steel tested at +40°F.

FIG. 14—R-curve and K_c results for subthickness (B = 0.5 in.) specimens of A572 Grade 50 steel tested at $+72^{\circ}F$.

FIG. 15—Summary of K_c results for subthickness (B = 0.5 in.) specimens of A572 Grade 50 steel.

FIG. 16—Fracture surfaces of subthickness (B = 0.5 in.) 2T CT specimens of A572 Grade 50 steel tested under load-control conditions using an essentially monotonic loading sequence (Armco procedure).

FIG. 17—Fracture surfaces of subthickness (B = 0.5in.) 4T CT specimens of A572 Grade steel tested under load-control conditions using a total unload/reload loading sequence (U. S. Steel procedure).

FIG. 18—Subthickness (B = 0.5 in.) 4T CT specimen 7-2 tested at +72°F. Photograph was taken after unload 33 and just prior to complete fracture (intentional). Note the extent of stable crack extension visible on the specimen surface ($\Delta a = a_f - a_g \approx 1.60$ in.).

FIG. 19—Superposition of ϵ_{BS} and P in the development for the 4T subthickness (B = 0.5 in.) specimen of A572 Grade 50 steel tested at +72°F.

FIG. 20—Combined CVN energy-absorption behavior of A572 Grade 50 steel as determined from the broken halves of 11 CT specimens used to establish R-curve behavior.

FIG. 21—Correlation between CVN energy absorption and lateral expansion (LE) for A572 Grade 50 steel at all temperatures (-80 to +72°F) as determined from the broken halves of 11 CT specimens used to establish R-curve behavior.

FIG. 22—Results of static fracture-toughness tests of A572 Grade steel ($\sigma_u = 50$ ksi).

FIG. 23—Results of static fracture-toughness tests of A572 Grade 50 steel ($\sigma_u = 62$ ksi).

FIG. 24—Summary comparisons of K_c and K_{Ic} behavior obtained from 1.5-in.-thick plates of A572 steel.

FIG. 25—Schematics of relationships between K_c and K_{lc} .

FIG. 26—Longitudinal Charpy V-notch energy absorption for impact and slow-bend tests of standard CVN specimens.

FIG. 27—Longitudinal Charpy V-notch lateral expansion for impact and slow-bend tests of standard CVN specimens.

FIG. 28—Critical flaw size (a_{cr}) requirements for the initiation of a critical event (K_{1cr}) for cracks contained in an infinite centercracked tension (CCT) specimen and subjected to a uniform tension stress (σ_D) applied remotely.