Characterization and Properties of Peppedecode Company of the second sec

INTERNATIONAL Standards Worldwide

ID. COUR

M. R. Riazi

Characterization and Properties of Petroleum Fractions

M. R. Riazi

ASTM Stock Number: MNL50

ASTM International 100 Barr Harbor PO Box C700 West Conshohocken, PA 19428-2959

Printed in the U.S.A.

Library of Congress Cataloging-in-Publication Data

Riazi, M.-R.

Characterization and properties of petroleum fractions / M.-R. Riazi—1st ed.
p. cm.—(ASTM manual series: MNL50)
ASTM stock number: MNL50
Includes bibliographical references and index.
ISBN 0-8031-3361-8
1. Characterization. 2. Physical property estimation. 3. Petroleum fractions—crude oils.

TP691.R64 2005 666.5—dc22

2004059586

Copyright © 2005 AMERICAN SOCIETY FOR TESTING AND MATERIALS, West Conshohocken, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

Photocopy Rights

Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by the American Society for Testing and Materials (ASTM) provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923; Tel: 508-750-8400; online: http://www.copyright.com/.

Printed in Baltimore, MD First Printing January 2005 Second Printing May 2007 *To My family and parents*

Contents

Foreword Preface	xv xvii
Chapter 1—Introduction	1
Nomenclature	1
1.1 Nature of Petroleum Fluids	1
1.1.1 Hydrocarbons	3
1.1.2 Reservoir Fluids and Crude Oil	57
1.1.3 Petroleum Fractions and Products	10
1.2 Types and Importance of Physical Properties	10
1.4 Organization of the Pook	12
1.5 Specific Features of this Manual	15
1.5 1 Introduction of Some Existing Books	15
1.5.2 Special Features of the Book	15
1.6 Applications of the Book	16
1.6.1 Applications in Petroleum Processing	10
(Downstream)	17
1.6.2 Applications in Petroleum Production	17
(Unstream)	17
1.6.3 Applications in Academia	17
1.6.4 Other Applications	17
1.7 Definition of Units and the Conversion Factors	17
1.7.1 Importance and Types of Units	17
1.7.2 Fundamental Units and Prefixes	18
1.7.3 Units of Mass	18
1.7.4 Units of Length	18
1.7.5 Units of Time	18
1.7.6 Units of Force	19
1.7.7 Units of Moles	19
1.7.8 Units of Molecular Weight	19
1.7.9 Units of Pressure	19
1.7.10 Units of Temperature	19
1.7.11 Units of Volume, Specific Volume, and	
Molar Volume—The Standard Conditions	20
1.7.12 Units of Volumetric and Mass Flow Rates	20
1.7.13 Units of Density and Molar Density	20
1.7.14 Units of Specific Gravity	21
1.7.15 Units of Composition	21
1.7.16 Units of Energy and Specific Energy	22
1.7.17 Units of Specific Energy per Degrees	22
1.7.18 Units of Viscosity and Kinematic Viscosity	23
1.7.19 Units of Thermal Conductivity	23
1.7.20 Units of Diffusion Coefficients	23
1.7.21 Units of Surface Tension	24
1.7.22 Units of Solubility Parameter	24
1.7.23 Units of Gas-to-Oil Ratio	24

	1.7.24 Values of Universal Constants	24
	1.7.24.1 Gas Constant	24
	1.7.24.2 Other Numerical Constants	24
	1.7.25 Special Units for the Rates and Amounts of	
	Oil and Gas	24
	1.8 Problems	26
	References	27
Chapter 2–	-Characterization and Properties of Pure	
	Hydrocarbons	30
	Nomenclature	30
	2.1 Definition of Basic Properties	31
	2.1.1 Molecular Weight	31
	2.1.2 Boiling Point	31
	2.1.3 Density, Specific Gravity, and API	
	Gravity	31
	2.1.4 Refractive Index	32
	2.1.5 Critical Constants (T_c , P_c , V_c , Z_c)	32
	2.1.6 Acentric Factor	33
	2.1.7 Vapor Pressure	33
	2.1.8 Kinematic Viscosity	33
	2.1.9 Freezing and Melting Points	34
	2.1.10 Flash Point	34
	2.1.11 Autoignition Temperature	34
	2.1.12 Flammability Range	34
	2.1.13 Octane Number	34
	2.1.14 Aniline Point	35
	2.1.15 Watson <i>K</i>	35
	2.1.16 Refractivity Intercept	35
	2.1.17 Viscosity Gravity Constant	35
	2.1.18 Carbon-to-Hydrogen Weight Ratio	36
	2.2 Data on Basic Properties of Selected Pure	•
	Hydrocarbons	36
	2.2.1 Sources of Data	36
	2.2.2 Properties of Selected Pure Compounds	37
	2.2.3 Additional Data on Properties of Heavy	
	Hydrocarbons	37
	2.3 Characterization of Hydrocarbons	45
	2.3.1 Development of a Generalized Correlation	
	for Hydrocarbon Properties	45
	2.3.2 Various Characterization Parameters for	4.0
	Hydrocarbon Systems	48
	2.3.3 Prediction of Properties of Heavy Pure	50
	Hydrocarbons	50
	2.3.4 Extension of Proposed Correlations to	- 4
	Nonhydrocarbon Systems	54
	2.4 Prediction of Molecular Weight, Boiling Point, and	FF
	Specific Gravity	55 55
	2.4.1 Prediction of Molecular Weight	55 55
	2.4.1.1 KIAZI-DAUDERI MIETNOUS	55 57
	2.4.1.2 AST WI WIETHOD	50 57
	2.4.1.5 API Methods	50
	2.4.1.4 Lee—Kesler Method	50
	2.4.1.5 Goossens Correlation	57
	2.4.1.6 Uther Methods	58

2.4.2 Prediction of Normal Boiling Point	58
2.4.2.1 Riazi–Daubert Correlations	58
2.4.2.2 Soreide Correlation	58
2.4.3 Prediction of Specific Gravity/API Gravity	58
2.5 Prediction of Critical Properties and Acentric	
Factor	60
2.5.1 Prediction of Critical Temperature and	
Pressure	60
2.5.1.1 Riazi–Daubert Methods	60
2.5.1.2 API Methods	60
2.5.1.3 Lee–Kesler Method	60
2.5.1.4 Cavett Method	61
2.5.1.5 Twu Method for T_c , P_c , V_c , and M	61
2.5.1.6 Winn–Mobil Method	62
2.5.1.7 Tsonopoulos Correlations	62
2.5.2 Prediction of Critical Volume	62
2.5.2.1 Riazi–Daubert Methods	62
2.5.2.2 Hall–Yarborough Method	63
2.5.2.3 API Method	63
2.5.3 Prediction of Critical Compressibility	
Factor	63
2.5.4 Prediction of Acentric Factor	64
2.5.4.1 Lee–Kesler Method	64
2.5.4.2 Edmister Method	65
2.5.4.3 Korsten Method	65
2.6 Prediction of Density, Refractive Index, CH Weight	
Ratio, and Freezing Point	66
2.6.1 Prediction of Density at 20°C	66
2.6.2 Prediction of Refractive Index	66
2.6.3 Prediction of CH Weight Ratio	68
2.6.4 Prediction of Freezing/Melting Point	68
2.7 Prediction of Kinematic Viscosity at 38	
and 99°C	70
2.8 The Winn Nomogram	73
2.9 Analysis and Comparison of Various	
Characterization Methods	75
2.9.1 Criteria for Evaluation of a Characterization	
Method	75
2.9.2 Evaluation of Methods of Estimation of	
Molecular Weight	76
2.9.3 Evaluation of Methods of Estimation of	
Critical Properties	77
2.9.4 Evaluation of Methods of Estimation of	
Acentric Factor and Other Properties	81
2.10 Conclusions and Recommendations	82
2 11 Problems	83
References	84
	01
Chapter 3—Characterization of Petroleum Fractions	87
Nomenclature	87
3.1 Experimental Data on Basic Properties of	υ.
Petroleum Fractions	88
3.1.1 Boiling Point and Distillation Curves	88
3.1.1.1 ASTM D86	88
3.1.1.2 True Boiling Point	89
Stitle fine Donnig i Onit	0,

		3.1.1.3 Simulated Distillation by Gas	
		Chromatography	89
		3.1.1.4 Equilibrium Flash Vaporization	91
		3.1.1.5 Distillation at Reduced Pressures	92
	3.1.2	Density, Specific Gravity, and API Gravity	93
	3.1.3	Molecular Weight	93
	3.1.4	Refractive Index	94
	3.1.5	Compositional Analysis	95
		3.1.5.1 Types of Composition	96
		3.1.5.2 Analytical Instruments	96
		3.1.5.3 PNA Analysis	98
		3.1.5.4 Elemental Analysis	98
	3.1.6	Viscosity	99
3.2	Predic	tion and Conversion of Distillation Data	100
	3.2.1	Average Boiling Points	100
	3.2.2	Interconversion of Various Distillation Data	101
		3.2.2.1 Riazi-Daubert Method	102
		3.2.2.2 Daubert's Method	103
		3.2.2.3 Interconverion of Distillation Curves	
		at Reduced Pressures	106
		3.2.2.4 Summary Chart for Interconverion	
		of Various Distillation Curves	108
	3.2.3	Prediction of Complete Distillation Curves	108
3.3	Predic	tion of Properties of Petroleum Fractions	111
	3.3.1	Matrix of Pseudocomponents Table	111
	3.3.2	Narrow Versus Wide Boiling Range	
		Fractions	112
	3.3.3	Use of Bulk Parameters (Undefined	
		Mixtures)	114
	3.3.4	Method of Pseudocomponent (Defined	
		Mixtures)	114
	3.3.5	Estimation of Molecular Weight, Critical	
		Properties, and Acentric Factor	115
	3.3.6	Estimation of Density, Specific Gravity,	
		Refractive Index, and Kinematic Viscosity	116
3.4	Gener	al Procedure for Properties of Mixtures	119
	3.4.1	Liquid Mixtures	119
	3.4.2	Gas Mixtures	120
3.5	Predic	tion of the Composition of Petroleum	
]	Fractio	ons	120
	3.5.1	Prediction of PNA Composition	120
		3.5.1.1 Characterization Parameters for	
		Molecular Type Analysis	121
		3.5.1.2 API Riazi–Daubert Methods	124
		3.5.1.3 API Method	126
		3.5.1.4 n-d-M Method	126
	3.5.2	Prediction of Elemental Composition	127
		3.5.2.1 Prediction of Carbon and Hydrogen	
		Contents	127
		3.5.2.2 Prediction of Sulfur and Nitrogen	
		Contents	129
3.6	Predic	tion of Other Properties	130
	3.6.1	Properties Related to Volatility	131
		3.6.1.1 Reid Vapor Pressure	131
		3.6.1.2 V/L Ratio and Volatility Index	133
		3.6.1.3 Flash Point	133

3.6.2 Pour Point	135
3.6.3 Cloud Point	135
3.6.4 Freezing Point	136
3.6.5 Aniline Point	137
3.6.5.1 Winn Method	137
3.6.5.2 Walsh–Mortimer	137
3.6.5.3 Linden Method	137
3.6.5.4 Albahri et al. Method	137
3.6.6 Cetane Number and Diesel Index	13/
3.6.8 Carbon Pasidua	138
3.6.9 Smoke Point	141
3.7 Quality of Petroleum Products	143
3.8 Minimum Laboratory Data	143
3.9 Analysis of Laboratory Data and Development	115
of Predictive Methods	145
3.10 Conclusions and Recommendations	146
3.11 Problems	146
References	149
Chapter 4—Characterization of Reservoir Fluids and	150
Crude Oils	152
A 1 Specifications of Becomicin Eluide and Crude	152
4.1 Specifications of Reservoir Fluids and Clude	153
411 Laboratory Data for Reservoir Fluids	153
4.1.2 Crude Oil Assavs	154
4.2 Generalized Correlations for Pseudocritical	151
Properties of Natural Gases and Gas Condensate	
Systems	160
4.3 Characterization and Properties of Single Carbon	
Number Groups	161
4.4 Characterization Approaches for C ₇₊ Fractions	163
4.5 Distribution functions for Properties of	
Hydrocarbon-plus Fractions	164
4.5.1 General Characteristics	164
4.5.2 Exponential Model	165
4.5.3 Gamma Distribution Model	167
4.5.4 Generalized Distribution Model	170
4.5.4.1 Versatile Correlation	170
4.5.4.2 Probability Density Function for the	
Proposed Generalized Distribution	174
4543 Calculation of Average Properties of	1/4
Hydrocarbon-Plus Fractions	175
4544 Calculation of Average Properties of	175
Subfractions	177
4.5.4.5 Model Evaluations	178
4.5.4.6 Prediction of Property Distributions	
Using Bulk Properties	181
4.6 Pseudoization and Lumping Approaches	184
4.6.1 Splitting Scheme	184
4.6.1.1 The Gaussian Quadrature Approach	185
4.6.1.2 Carbon Number Range Approach	186
4.6.2 Lumping Scheme	186
4.7 Continuous Mixture Characterization Approach	187

x CONTENTS

4.8	Calculation of Properties of Crude Oils and	
	Reservoir Fluids	189
	4.8.1 General Approach	190
	4.8.2 Estimation of Sulfur Content of a Crude Oil	191
4.9	Conclusions and Recommendations	192
4.10	Problems	193
	References	194
Chapter 5—PV	T Relations and Equations of State	197
	Nomenclature	197
5.1	Basic Definitions and the Phase Rule	198
5.2	PVT Relations	199
5.3	Intermolecular Forces	202
5.4	Equations of State	203
	5.4.1 Ideal Gas Law	203
	5.4.2 Real Gases—Liquids	203
5.5	Cubic Equations of State	204
	5.5.1 Four Common Cubic Equations (vdW, RK,	
	SRK, and PR)	204
	5.5.2 Solution of Cubic Equations of State	206
	5.5.3 Volume Translation	207
	5.5.4 Other Types of Cubic Equations of State	208
	5.5.5 Application to Mixtures	209
5.6	Noncubic Equations of State	210
	5.6.1 Virial Equation of State	210
	5.6.2 Modified Benedict–Webb–Rubin Equation	
	of State	214
	5.6.3 Carnahan–Starling Equation of State and Its	
	Modifications	214
5.7	Corresponding State Correlations	215
5.8	Generalized Correlation for PVT Properties of	
	Liquids—Rackett Equation	222
	5.8.1 Rackett Equation for Pure Component	
	Saturated Liquids	222
	5.8.2 Defined Liquid Mixtures and Petroleum	
	Fractions	223
	5.8.3 Effect of Pressure on Liquid Density	223
5.9	Refractive Index Based Equation of State	225
5.10	Summary and Conclusions	227
5.11	Problems	228
	References	229
Chapter 6—The	ermodynamic Relations for Property Estimations	232
	Nomenclature	232
6.1	Definitions and Fundamental Thermodynamic	
	Relations	234
	6.1.1 Thermodynamic Properties and	
	Fundamental Relations	234
	6.1.2 Measurable Properties	235
	6.1.3 Residual Properties and Departure	
	Functions	236
	6.1.4 Fugacity and Fugacity Coefficient for Pure	
	Components	237
	6.1.5 General Approach for Property Estimation	238
6.2	Generalized Correlations for Calculation of	
	Thermodynamic Properties	238

6.3 Properties of Ideal Gases	241
6.4 Thermodynamic Properties of Mixtures	247
6.4.1 Partial Molar Properties	248
6.4.2 Properties of Mixtures—Property Change	
Due to Mixing	249
6.4.3 Volume of Petroleum Blends	251
6.5 Phase Equilibria of Pure Components—Concept	
of Saturation Pressure	251
6.6 Phase Equilibria of Mixtures—Calculation	
of Basic Properties	254
6.6.1 Definition of Fugacity, Fugacity Coefficient,	
Activity, Activity Coefficient, and Chemical	
Potential	254
6.6.2 Calculation of Fugacity Coefficients from	
Equations of State	255
6.6.3 Calculation of Fugacity from Lewis Rule	256
6.6.4 Calculation of Fugacity of Pure Gases and	
Liquids	256
6.6.5 Calculation of Activity Coefficients	257
6.6.6 Calculation of Fugacity of Solids	261
6.7 General Method for Calculation of Properties of	
Real mixtures	263
6.8 Formulation of Phase Equilibria Problems for	
Mixtures	263
6.8.1 Criteria for Mixture Phase Equilibria	263
6.8.2 Vapor–Liquid Equilibria—Gas Solubility in	
Liquids	265
6.8.2.1 Formulation of Vapor–Liquid	
Equilibria Relations	265
6.8.2.2 Solubility of Gases in	
Liquids—Henry's Law	266
6.8.2.3 Equilibrium Ratios (K _i Values)	269
6.8.3 Solid-Liquid Equilibria—Solid Solubility	276
6.8.4 Freezing Point Depression and Boiling Point	
Elevation	281
6.9 Use of Velocity of Sound in Prediction of Fluid	
Properties	284
6.9.1 Velocity of Sound Based Equation	
of State	286
6.9.2 Equation of State Parameters from Velocity	
of Sound Data	287
6.9.2.1 Virial Coefficients	287
6.9.2.2 Lennard–Jones and van der Waals	
Parameters	288
6.9.2.3 RK and PR EOS Parameters—	
Property Estimation	289
6.10 Summary and Recommendations	292
6.11 Problems	292
References	294
Chapter 7—Applications: Estimation of Thermophysical	207
Properties	297
Nomenciature	297
7.1 General Approach for Prediction of	
I nermophysical Properties of Petroleum Fractions	200
and Defined Hydrocarbon Mixtures	298

	7.2 Density	300
	7.2.1 Density of Gases	300
	7.2.2 Density of Liquids	300
	7.2.3 Density of Solids	304
	7.3 Vapor Pressure	305
	7.3.1 Pure Components	305
	7.3.2 Predictive Methods—Generalized	
	Correlations	306
	7.3.3 Vapor Pressure of Petroleum Fractions	312
	7.3.3.1 Analytical Methods	312
	7.3.3.2 Graphical Methods for Vapor	
	Pressure of Petroleum Products	212
	and Crude Olls	313 214
	7.4 Thermal Properties	31 4 316
	7.4 1 Enthalmy	316
	7.4.1 Entitlipy 7.4.2 Heat Canacity	319
	7 4 3 Heats of Phase Changes—Heat of	517
	Vaporization	321
	7.4.4 Heat of Combustion—Heating Value	324
	7.5 Summary and Recommendations	326
	7.6 Problems	327
	References	328
Chapter 8-	Applications: Estimation of Transport Properties	329
F	Nomenclature	329
	8.1 Estimation of Viscosity	331
	8.1.1 Viscosity of Gases	331
	8.1.2 Viscosity of Liquids	335
	8.2 Estimation of Thermal Conductivity	339
	8.2.1 Thermal Conductivity of Gases	339
	8.2.2 Thermal Conductivity of Liquids	342
	8.3 Diffusion Coefficients	345
	8.3.1 Diffusivity of Gases at Low Pressures	346
	8.3.2 Diffusivity of Liquids at Low Pressures 8.3.3 Diffusivity of Gases and Liquids at High	347
	Pressures	348
	8.3.4 Diffusion Coefficients in Mutlicomponent	510
	Systems	350
	8.3.5 Diffusion Coefficient in Porous Media	350
	8.4 Interrelationship Among Transport Properties	351
	8.5 Measurement of Diffusion Coefficients in Reservoir	
	Fluids	354
	8.6 Surface/Interfacial Tension	356
	8.6.1 Theory and Definition	356
	8.6.2 Predictive Methods	358
	8.7 Summary and Recommendations	361
	8.8 Problems	362
	Keterences	362
Chapter 9—Applications: Phase Equilibrium Calculations		
	Nomenclature	365
	9.1 Types of Phase Equilibrium Calculations	366
	9.2 Vapor-Liquid Equilibrium Calculations	367
	9.2.1 Flash Calculations—Gas-to-Oll Katlo 9.2.2 Rubble and Day Points Calculations	308 270
	7.2.2 DUDDIC and DCW I Units Calculations	510

	9.2.3 Generation of P–T Diagrams—True Critical	
	Properties	372
	9.3 Vapor-Liquid-Solid Equilibrium—Solid	
	Precipitation	373
	9.3.1 Nature of Heavy Compounds, Mechanism of	
	their Precipitation, and Prevention Methods	373
	9.3.2 Wax Precipitation—Solid Solution Model	378
	9.3.3 Wax Precipitation: Multisolid-Phase	
	Model—Calculation of Cloud Point	382
	9.4 Asphaltene Precipitation: Solid–Liquid Equilibrium	385
	9.5 Vapor–Solid Equilibrium—Hydrate Formation	388
	9.6 Applications: Enhanced Oil Recovery—Evaluation	
	of Gas Injection Projects	390
	9.7 Summary and Recommendations	391
	9.8 Final Words	392
	9.9 Problems	393
	References	395
Appendix		397
Index		401

Foreword

THIS PUBLICATION, *Characterization and Properties of Petroleum Fractions*, was sponsored by ASTM Committee D02 on Petroleum Fuels and Lubricants. The author is M. R. Riazi, Professor of Chemical Engineering, Kuwait University, Safat, Kuwait. This publication is Manual 50 of ASTM's manual series.

Preface

Scientists do not belong to any particular country, ideology, or religion, they belong to the world community

THE FIELD OF Petroleum Characterization and Physical Properties has received significant attention in recent decades with the expansion of computer simulators and advanced analytical tools and the availability of more accurate experimental data. As a result of globalization, structural changes are taking place in the chemical and petroleum industry. Engineers working in these industries are involved with process simulators to design and operate various units and equipment. Nowadays, a large number of process simulators are being produced that are equipped with a variety of thermodynamic models and choice of predictive methods for the physical properties. A person familiar with development of such methods can make appropriate use of these simulators saving billions of dollars in costs in investment, design, manufacture, and operation of various units in these industries. Petroleum is a complex mixture of thousands of hydrocarbon compounds and it is produced from an oil well in a form of reservoir fluid. A reservoir fluid is converted to a crude oil through surface separation units and then the crude is sent to a refinery to produce various petroleum fractions and hydrocarbon fuels such as kerosene, gasoline, and fuel oil. Some of the refinery products are the feed to petrochemical plants. More than half of world energy sources are from petroleum and probably hydrocarbons will remain the most convenient and important source of energy and as a raw material for the petrochemical plants at least throughout the 21st century. Other fossil type fuels such as coal liquids are also mixtures of hydrocarbons although they differ in type with petroleum oils. From 1970 to 2000, the share of Middle East in the world crude oil reserves raised from 55 to 65%, but this share is expected to rise even further by 2010– 2020 when we near the peak point where half of oil reserves have been produced. The world is not running out of oil yet but the era of cheap oil is perhaps over. Therefore, economical use of the remaining oil and treatment of heavy oils become increasingly important. As it is discussed in Chapter 1, use of more accurate physical properties for petroleum fractions has a direct and significant impact on economical operation and design of petroleum processing and production units which in turn would result in a significant saving of existing petroleum reserves.

One of the most important tasks in petroleum refining and related processes is the need for reliable values of the volumetric and thermodynamic properties for pure hydrocarbons and their mixtures. They are important in the design and operation of almost every piece of processing equipment. Reservoir engineers analyze PVT and phase behavior of reservoir fluids to estimate the amount of oil or gas in a reservoir, to determine an optimum operating condition in a separator unit, or to develop a recovery process for an oil or gas field. However, the most advanced design approaches or the most sophisticated simulators cannot guarantee the optimum design or operation of a unit if required input physical properties are not accurate. A process to experimentally determine the volumetric, thermodynamic, and transport properties for all the industrially important materials would be prohibitive in both cost and time; indeed it could probably never be completed. For these reasons accurate estimations of these properties are becoming increasingly important.

Characterization factors of many types permeate the entire field of physical, thermodynamic, and transport property prediction. Average boiling points, specific gravity, molecular weight, critical temperature, critical pressure, acentric factor, refractive index, and certain molecular type analysis are basic parameters necessary to utilize methods of correlation and prediction of the thermophysical properties. For correlating physical and thermodynamic properties, methods of characterizing undefined mixtures are necessary to provide input data. It could be imagined that the best method of characterizing a mixture is a complete analysis. However, because of the complexity of undefined mixtures, complete analyses are usually impossible and, at best, inconvenient. A predictive method to determine the composition or amount of sulfur in a hydrocarbon fuel is vital to see if a product meets specifications set by the government or other authorities to protect the environment.

My first interaction with physical properties of petroleum fluids was at the time that I was a graduate student at Penn State in the late 70s working on a project related to enhanced oil recovery for my M.S. thesis when I was looking for methods of estimation of properties of petroleum fluids. It was such a need and my personal interest that later I joined the ongoing API project on thermodynamic and physical properties of petroleum fractions to work for my doctoral thesis. Since that time, property estimation and characterization of various petroleum fluids has remained one of my main areas of research. Later in the mid-80s I rejoined Penn State as a faculty member and I continued my work with the API which resulted in development of methods for several chapters of the API Technical Data Book. Several years later in late 80s, I continued the work while I was working at the Norwegian Institute of Technology (NTH) at Trondheim where I developed some characterization techniques for heavy petroleum fractions as well as measuring methods for some physical properties. In the 90s while at Kuwait University I got the opportunity to be in direct contact with the oil companies in the region through research, consultation, and conducting special courses for the industry. My association with the University of Illinois at Chicago in early 90s was helpful in the development of equations of state based on velocity of sound. The final revision of the book was completed when I was associated with the University of Texas at Austin and McGill University in Montreal during my leave from Kuwait University.

Part of the materials in this book were prepared when I was teaching a graduate course in applied thermodynamics in 1988 while at NTH. The materials, mainly a collection of technical papers, have been continuously updated and rearranged to the present time. These notes have also been used to conduct industrial courses as well as a course on fluid properties in chemical and petroleum engineering. This book is an expansion with complete revision and rewriting of these notes. The main objective of this book is to present the fundamentals and practice of estimating the physical and thermodynamic properties as well as characterization methods for hydrocarbons, petroleum fractions, crude oils, reservoir fluids, and natural gases, as well as coal liquids. However, the emphasis is on the liquid petroleum fractions, as properties of gases are generally calculated more accurately. The book will emphasize manual calculations with practical problems and examples but also will provide good understanding of techniques used in commercial software packages for property estimations. Various methods and correlations developed by different researchers commonly used in the literature are presented with necessary discussions and recommendations.

My original goal and objective in writing this book was to provide a reference for the petroleum industry in both processing and production. It is everyone's experience that in using thermodynamic simulators for process design and equipment, a large number of options is provided to the user for selection of a method to characterize the oil or to get an estimate of a physical property. This is a difficult choice for a user of a simulator, as the results of design calculations significantly rely on the method chosen to estimate the properties. One of my goals in writing this book was to help users of simulators overcome this burden. However, the book is written in a way that it can also be used as a textbook for graduate or senior undergraduate students in chemical, petroleum, or mechanical engineering to understand the significance of characterization, property estimation and methods of their development. For this purpose a set of problems is presented at the end of each chapter. The book covers characterization as well as methods of estimation of thermodynamic and transport properties of various petroleum fluids and products. A great emphasis is given to treatment of heavy fractions throughout the book. An effort was made to write the book in a way that not only would be useful for the professionals in the field, but would also be easily understandable to those non-engineers such as chemists, physicists, or mathematicians who get involved with the petroleum industry. The word properties in the title refers to thermodynamic, physical, and transport properties. Properties related to the quality and safety of petroleum products are also discussed. Organization of the book, its uses, and importance of the methods are discussed in detail in Chapter 1. Introduction of similar books and the need for the present book as well as its application in the industry and academia are also discussed in Chapter 1. Each chapter begins with nomenclature and ends with the references used in that chapter. Exercise problems in each chapter contain additional information and methods. More specific information about each chapter and its contents are given in Chapter 1. As Goethe said, "Things which matter most must never be at the mercy of things which matter least."

I am indebted to many people especially teachers, colleagues, friends, students, and, above all, my parents, who have been so helpful throughout my academic life. I am particularly thankful to Thomas E. Daubert of Pennsylvania State University who introduced to me the field of physical properties and petroleum characterization in a very clear and understandable way. Likewise, I am thankful to Farhang Shadman of the University of Arizona who for the first time introduced me to the field of chemical engineering research during my undergraduate studies. I am indebted to them for their human characters and their scientific skills. I have been fortunate to meet and discuss with many scientists and researchers from both the oil industry and academia from around the world during the last two decades whose thoughts and ideas have in many ways been helpful in shaping the book.

I am also grateful to the institutions, research centers, and oil companies that I have been associated with or that have invited me for lecturing and consultation. Thanks to Kuwait University as well as Kuwait Petroleum Corporation (KPC) and KNPC, many of whose engineers I developed working relations with and have been helpful in evaluation of many of the estimating methods throughout the years. I am thankful to all scientists and researchers whose works have been used in this book and I hope that all have been correctly and appropriately cited. I would be happy to receive their comments and suggestions on the book. Financial support from organizations such as API, NSF, GPA, GRI, SINTEF, Petrofina Exploration Norway, NSERC Canada, Kuwait University, and KFAS that was used for my research work over the past two decades is also appreciated.

I am grateful to ASTM for publishing this work and particularly to Geroge Totten who was the first to encourage me to begin writing this book. His advice, interest, support, and suggestions through the long years of writing the book have been extremely helpful in completing this project. The introductory comments from him as well as those from other experts in the field for the back cover are appreciated. I am also grateful to the four unanimous reviewers who tirelessly reviewed the entire and lengthy manuscript with their constructive comments and suggestions which have been reflected in the book. Thanks also to Kathy Dernoga, the publishing manager at ASTM, who was always cooperative and ready to answer my questions and provided me with necessary information and tools during the preparation of this manuscript. Her encouragements and assistance were quite useful in pursuing this work. She also was helpful in the design of the front and back covers of the book as well as providing editorial suggestions. I am thankful to Roberta Storer and Joe Ermigiotti for their excellent job of editing and updating the manuscript. Cooperation of other ASTM staff, especially Monica Siperko, Carla J. Falco, and Marsha Firman is highly appreciated. The art work and most of the graphs and figures were prepared by Khaled Damyar of Kuwait University and his efforts for the book are appreciated. I also sincerely appreciate the publishers and the organizations that gave their permissions to include some published materials, in particular API, ACS, AIChE, GPA, Elsevier (U.K.), editor of Oil & Gas J., McGraw-Hill, Marcel and Dekker, Wiley, SPE, IFP, and Taylor and Francis. Thanks to the manager and personnel of KISR for allowing the use of photos of their instruments in the book. Finally and most importantly, I must express my appreciation and thanks to my family who have been helpful and patient during all these years and without whose cooperation, moral support, understanding, and encouragement this project could never have been undertaken. This book is dedicated to my family, parents, teachers, and the world scientific community.

> M. R. Riazi November 2006 riazi@kuc01.kuniv.edu.kw mrriazi@gmail.com

About the Author

Dr. M. R. Riazi is a professor of chemical engineering at Kuwait University. He was previously an assistant professor at Pennsylvania State University (USA), where he also received his M.S. and Ph.D. degrees. He was also a visiting professor at the following universities: Trondheim (Norway), Illinois (Chicago, USA), Wright State (Dayton, USA), Texas (Austin, USA), and McGill (Montreal, Canada). Dr. Riazi has been a consultant to several oil companies and research institutes in North America, Western Europe, North Africa, the Middle East, and Southeast Asia.

Dr. Riazi has published about 80 technical articles mainly in the fields of petroleum and chemical technology and has developed methods for three chapters of the API Data Book – *Petroleum Refining* and authored one book and four book chapters. In addition he has presented papers to more than 50 international conferences and Canadian Oil and Gas Review wrote about him. He is the Editor-in-Chief of the *International Journal of Oil, Gas and Coal Technology*. He is also on the Editorial Board of the *Journal of ASTM International* and serves as associate editor of the *Journal of Petroleum Science, Engineering and World Review of Science, Technology and Sustainable Development.*

Dr. Riazi's methods for characterization of crude oils and petroleum products have been used by oil companies and research centers worldwide and has presented about 80 invited lectures and short courses to the petroleum industry and research institutes in Canada, United States, United Kingdeom, France, Switzerland, Denmark, Holland, Norway, Poland, Malaysia, India, China, Australia, Kuwait, The Middle East and North Africa.

In 1995, he was awarded a Diploma of Honor from the American (National) Petroleum Engineering Society for his outstanding service to the petroleum industry. He was also awarded the Kuwait University outstanding research and teaching awards from the Crown Prince of Kuwait. He is a member of AIChE and the Research Society of North America.

"Perhaps the most comprehensive and important new text on petroleum production and processing published in many years. Numerous examples and problems are an invaluable resource for practicing engineers and chemists, as well as University Professors."

George E. Totten, Ph.D., G.E. Totten & Associates, LLC, Seattle, WA

"Characterization and Properties of Petroleum Fractions" is a vital subject for engineers faced with the separations involved in the fossil fuels industries. Originally trained to deal with binary systems, engineers face a major challenge in how to deal with many component systems. This book addresses these problems.

Professor Philip T. Eubank, Texas A&M University, College Station, Texas

"This is an invaluable new resource for everyone involved in characterizing petroleum fractions, or the design or optimization of production and processing units. It is a near-encyclopedic compendium of thermodynamic and physical property data on crude oil and petroleum fractions ranging from gases to heavy residuum. More than 100 properties are discussed, and over 600 predictive methods included."

Harry N. Giles, U. S. Department of Energy, Washington, DC

"Characterization and Properties of Petroleum Fractions is a tremendous resource to anyone working in the area of hydrocarbon analysis, properties estimation and process modeling. For the first time, up-to-date information and validated procedures are in one place and well- explained with concise charts and tables, instead of spread over two decades of journal articles. This manual is a significant contribution to the petroleum industry."

Jim McGehee, UOP, LLC, Refining Research & Development, Des Plaines, IL

"The book written by Dr. M. R. Riazi uniquely combines hydrocarbon characterization and thermodynamics for estimation of nearly all important thermophysical properties required in design and operation of units needed for petroleum production, processing, transportation, and storage. In addition, the book discusses fuels quality and specifications required for marketing, distribution, safety, and environmental concerns."

José Luis Peña Díez, Repsol-YPF, Madrid, Spain

www.astm.org

ISBN 0-8031-3361-8 ISBN 13: 978-0-8031-3361-7

ASTM Stock# MNL50