
NONLINEAR FRACTURE MECHANICS Time-Dependent Fracture

Saxena/Landes/Bassani editors

STP 995

Nonlinear Fracture Mechanics: Volume I Time-Dependent Fracture

A. Saxena, J. D. Landes, and J. L. Bassani, editors

Library of Congress Cataloging-in-Publication Data

Nonlinear fracture mechanics/A. Saxena, J. D. Landes, and J. L. Bassani, editors. (STP : 995) Papers presented at the Third International Symposium on Nonlinear Fracture Mechanics, held 6-8 Oct. 1986 in Knoxville, Tenn., and sponsored by ASTM Committee E-24 on Fracture Testing. "ASTM publication code number (PCN) 04-995001-30." Includes bibliographies and indexes. Contents: v. 1. Time-dependent fracture. ISBN 0-8031-1174-6 1. Fracture mechanics-Congresses. I. Saxena, A. (Ashok). II. Landes, J. D. (John D.). III. Bassani, J. L. (John L.). IV. International Symposium on Nonlinear Fracture Mechanics (3rd : 1986 : Knoxville, Tenn.). V. ASTM Committee E-24 on Fracture Testing. VI. Series: ASTM special technical publication ; 995. TA409.N66 1988 620.1'126—dc19 88-38147

88-38147 CIP

Copyright © by American Society for Testing and Materials 1988

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM.

Foreword

This publication, Nonlinear Fracture Mechanics: Volume I—Time-Dependent Fracture, contains papers presented at the Third International Symposium on Nonlinear Fracture Mechanics, which was held 6–8 Oct. 1986 in Knoxville Tennessee. ASTM Committee E-24 on Fracture Testing sponsored the event. The cochairmen for the symposium section on Time-Dependent Fracture were A. Saxena, Georgia Institute of Technology, and J. L. Bassani, University of Pennsylvania. Both men, along with J. D. Landes, University of Tennessee, served as editors of this publication.

Contents

Overview

1

CREEP CRACK GROWTH

Evaluation of the C_i Parameter for Characterizing Creep Crack Growth Rate in	
the Transient Regime—JOHN L. BASSANI, DONALD E. HAWK, AND ASHOK SAXENA	7
A Critical Assessment of Global Mechanical Approaches to Creep Crack Initiation and Creep Crack Growth in 316L Steel—PHILIPPE BENSUSSAN,	
ROLAND PIQUES, AND ANDRE PINEAU	27
A Numerical Study of Non-Steady-State Creep at Stationary Crack Tips—	
CHUN-POK LEUNG, DAVID L. MCDOWELL, AND ASHOK SAXENA	55
Crack Growth in Small-Scale Creep —JOHN L. BASSANI, DONALD E. HAWK, AND FWU-HWEI WU	68
Growth of Macroscopic Cracks by Void Coalescence Under Extensive Creeping Conditions—CHUNG-YUEN HUI AND KUANG-CHONG WU	96
Creep Crack Growth of Alloy 800H in Controlled-Impurity Helium— JUDE R. FOULDS	112
Creep Embrittlement Susceptibility and Creep Crack Growth Behavior in Low-Alloy Steels: An Assessment of the Effects of Residual Impurity Elements and Postweld Heat Treatment Condition on Creep Ductility and Crack Growth—shinji Konosu and Keikichi Maeda	127
Influence of Aging on High-Temperature Creep Crack Growth in Type 304H Stainless Steel—G. M. BUCHHEIM, C. BECHT, K. M. NIKBIN, V. DIMOPOLOS, G. A. WEBSTER, AND D. J. SMITH	153
An Anisotropic, Damage-Coupled Viscoplastic Model for Creep-Dominated Cyclic Loading—DAVID L. MCDOWELL, KWANG-IL HO, AND JAMES STALLEY	173
Experimental Determination of the High-Temperature Crack Growth Behavior of Incoloy 800H—THOMAS HOLLSTEIN AND BERT VOSS	195

DYNAMIC FRACTURE

Three-Dimensional Transient Analysis of a Dynamically Loaded Three-Point-Bend Ductile Fracture Specimen—T. NAKAMURA, C. F. SHIH,	217
AND L. B. FREUND	217
Influence of Loading Rate on the Deformation and Ductile Fracture of A533B	
Steel at 70°C—DAVID J. SMITH AND STEPHEN J. GARWOOD	242
Measurement of Dynamic Fracture Toughness of Ductile Materials—	
EDWIN M. HACKETT, JAMES A. JOYCE, AND CHOON FONG SHIH	274
An Advanced Procedure for <i>J-R</i> Curve Testing Using a Drop Tower	
JAMES A. JOYCE AND EDWIN M. HACKETT	298
Measurement of the J-Integral with Caustics: An Experimental and Numerical	
Investigation—ALAN T. ZEHNDER, ARES J. ROSAKIS, AND RAMARATNAM	
NARASIMHAN	318
Correlation of Optical Caustics with Fracture Behavior of High-Strength Steels—	
RALPH W. JUDY, JR., AND ROBERT J. SANFORD	340

CYCLIC LOADING

An Experimental Study of the Validity of a Delta J Criterion for Fatigue Crack Growth—DAVID A. JABLONSKI	361
Combined-Mode Low-Cycle Fatigue Crack Growth Under Torsional Loading— ROY A. WILLIAMS AND WELDON W. WILKENING	388
Fatigue Crack-Tip Mechanics in 7075-T6 Aluminum Alloy from High-Sensitivity Displacement Field Measurements—GIANNI NICOLETTO	415
Dislocation-Free Zone Model of Fracture Under Reverse Loading— SHIH-JUNG CHANG AND S. MICHAEL OHR	433

FRACTURE OF NONMETALS

Fracture Toughness Testing of Polyethylene Pipe Materials—ROBERT E.		
JONES, JR., AND WALTER L. BRADLEY	447	
Nonlinear Fracture of Concrete and Ceramics—ALBERT S. KOBAYASHI, JIA-JI DU,		
NIEL M. HAWKINS, AND RICHARD C. BRADT	457	

INDEXES

Author Index	475
Subject Index	477

ISBN 0-8031-1174-6