

# HEAT TRANSMISSION MEASUREMENTS IN THERMAL INSULATIONS



AMERICAN SOCIETY FOR TESTING AND MATERIALS

## HEAT TRANSMISSION MEASUREMENTS IN THERMAL INSULATIONS

A symposium sponsored by ASTM Committee C-16 on Thermal and Cryogenic Insulating Materials AMERICAN SOCIETY FOR TESTING AND MATERIALS Philadelphia, Pa., 16-17 April 1973

ASTM SPECIAL TECHNICAL PUBLICATION 544 R. P. Tye, symposium chairman

List price \$30.75 04-544000-10

AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race Street, Philadelphia, Pa. 19103

#### © by American Society for Testing and Materials 1974 Library of Congress Catalog Card number: 73-87351

#### NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Printed in Baltimore, Maryland June, 1974 Printed in Philadelphia, Pennsylvania Second Printing, January, 1980

### Foreword

The Symposium on Contributions of Basic Heat Transmission Measurements to the Design and Behavior of Thermal Insulation Systems was held at the American Society for Testing and Materials Headquarters in Philadelphia, Pa., on 16-17 April 1973. The symposium was sponsored by ASTM Committee C-16 on Thermal and Cryogenic Insulating Materials. R. P. Tye, Dynatech R/D Company, presided as the symposium chairman.

## Related ASTM Publications

Thermal Insulating Covers for NPS Piping, Vessel Lagging and Dished Head Segments. ASTM Recommended Practice for Prefabrication and Field Fabrication of-C 450 adjunct (1965), \$4.25, 12-304500-00

Manual on the Use of Thermocouples in Temperature Measurement, STP 470A (1974), \$17.50. 04-470010-40

## Contents

| Introduction                                                             | 1   |
|--------------------------------------------------------------------------|-----|
| Definitions and Thermal Modelling                                        |     |
| What Property Do We Measure-ASTM Subcommittee C16.30                     |     |
| Measurement Philosophy of Subcommittee C16-30                            | :   |
| Heat Transfer                                                            | ,   |
| The Necessity of Multiple Measurements                                   | 9   |
| Recommendations for Future Changes                                       | 1   |
| Establishing Steady-State Thermal Conditions in Flat Slab Specimens-     |     |
| C. J. Shirtliffe                                                         | 13  |
| Basic Problem                                                            | 1:  |
| Common Factors in Models                                                 | 1:  |
| Model Descriptions and Solutions                                         | 1:  |
| Simplification of Solutions                                              | 10  |
| Truncation of Solutions                                                  | 1'  |
| Inversion of the Solutions                                               | 22  |
| Comparison of Settling Times                                             | 2   |
| Accuracy of Equations                                                    | 24  |
| Conclusions                                                              | 24  |
| Mechanisms of Heat Transfer in Permeable Insulation and Their Investi-   |     |
| gation in a Special Guarded Hot Plate $-C$ . G. Bankvall                 | 34  |
| Measurement of Heat Transfer                                             | 3   |
| The Guarded Hot Plate                                                    | 3   |
| Heat Transfer Mechanisms in Fibrous Insulation                           | 40  |
| The Natural Convective Heat Transfer                                     | 43  |
| Summary                                                                  | 48  |
| Water Vapor Diffusion and Frost in Porous Materials-A. Auracher          | 49  |
| Diffusion in Porous Frost-Containing Materials                           | -50 |
| Diffusion on Simple, Frost-Containing Pore Models                        | 5   |
| Diffusion in Frost-Containing Sphere Packings                            | 6   |
| Discussion                                                               | 66  |
| Conclusion                                                               | 67  |
| Radiative Contribution to the Thermal Conductivity of Fibrous Insula-    |     |
| tions-R. M. F. Linford, R. J. Schmitt, and T. A. Hughes                  | 68  |
| Nomenclature                                                             | 69  |
| Theoretical Models for Radiant Heat Transfer                             | 70  |
| Experimental Approach                                                    | 75  |
| Experimental Results                                                     | 78  |
| Calculation of the Radiation Transmission Component                      | 82  |
| Conclusions                                                              | 83  |
| Predicting Spacecraft Multilayer Insulation Performance from Heat Trans- |     |
| fer Measurements-L. D. Stimpson and W. A. Hagemeyer                      | 85  |
| System-Level MLI Blanket Results                                         | 87  |
| Types of Calorimeters Used                                               | 89  |
| The JPL Test Program                                                     | 90  |

| Discussion of Future MLI Requirements<br>Conclusions                                                                  | 92<br>92 |
|-----------------------------------------------------------------------------------------------------------------------|----------|
| Techniques                                                                                                            |          |
| Design Criteria for Guarded Hot Plate Apparatus-F. De Ponte and P. Di                                                 |          |
| Filippo                                                                                                               | 97       |
| The Guarded Hot Plate                                                                                                 | 99       |
| The Cold Plate                                                                                                        | 109      |
| Conclusions                                                                                                           | 116      |
| Suitable Steady-State Methods for Measurement of Effective Thermal<br>Conductivity in Rigid Insulations-W, T. Engelke | 118      |
| Comparative Rod Apparatus                                                                                             | 120      |
| Radial Inflow Apparatus                                                                                               | 126      |
| Application                                                                                                           | 129      |
| Conclusions                                                                                                           | 133      |
| Thermal Conductance of Pipe Insulation-A Large-Scale Test Apparatus-                                                  |          |
| L. R. Kimball                                                                                                         | 135      |
| Test Procedure                                                                                                        | 136      |
| Selected Experimental Results                                                                                         | 140      |
| Discussion                                                                                                            | 142      |
| Conclusions                                                                                                           | 146      |
| New Development in Design of Equipment for Measuring Thermal                                                          |          |
| Conductivity and Heat Flow-E. Brendeng and P. E. Frivik                                                               | 147      |
| Nomenclature                                                                                                          | 148      |
| Steady-State Measurements                                                                                             | 149      |
| Test Results                                                                                                          | 156      |
| Transient State Measurements                                                                                          | 164      |
| Robinson Line-Heat-Source Guarded Hot Plate Apparatus-M. H. Hahn,<br>H. E. Robinson, and D. R. Flynn                  | 167      |
| Mathematical Analysis of Line-Heat-Source Guarded Hot Plate                                                           | 169      |
| Design of Proposed Apparatus                                                                                          | 185      |
| Conclusion                                                                                                            | 191      |
| Calibrated Hot Box: An Effective Means for Measuring Thermal Conduc-                                                  | 171      |
| tance in Large Wall Sections-J. R. Mumaw                                                                              | 193      |
| Description of Test Apparatus                                                                                         | 194      |
| Construction of Test Apparatus                                                                                        | 195      |
| Hot Side Construction Details                                                                                         | 196      |
| Cold Side Construction Details                                                                                        | 198      |
| Specimen Frame Construction                                                                                           | 199      |
| Air Infiltration Test Capability                                                                                      | 199      |
| Obtaining Proper Test Results-The Data System                                                                         | 200      |
| Hot Side Chamber Calibration                                                                                          | 201      |
| Testing Procedure                                                                                                     | 202      |
| Discussion of Testing Results                                                                                         | 203      |
| Conclusions and Recommendations                                                                                       | 211      |
| Results and Applications                                                                                              |          |
| Improving the Thermal Performance of the Ordinary Concrete Block-                                                     |          |
| H. N. Knickle and Edgar Ducharme                                                                                      | 215      |
| Procedure                                                                                                             | 216      |
| Experimental Work                                                                                                     | 218      |

| Economic Analysis                                                     | 220        |
|-----------------------------------------------------------------------|------------|
| Conclusions                                                           | 221        |
| Some Recent Experimental Data on Glass Fiber Insulating Materials and |            |
| Their Use for a Reliable Design of Insulations at Low Temperatures-   |            |
| D. Fournier and S. Klarsfeld                                          | 223        |
| Theoretical Data                                                      | 224        |
| Measurements Facilities                                               | 227        |
| Materials Investigated and Test Procedure                             | 230        |
| Experimental Results                                                  | 231        |
| Some Applications of Both Theoretical Results and Experimental Data   |            |
| to Design Actual Insulations at Low Temperatures                      | 235        |
| General Conclusion                                                    | 240        |
| Evacuated Load Bearing Thermal Insulation up to 800°C-D. J. Dickson   | 243        |
| Procedure                                                             | 245        |
| Experimental Results                                                  | 248        |
| Discussion                                                            | 250        |
| Conclusions                                                           | 253        |
| Thermal Conductivity of Evacuated Glass Beads: Line Source Measure-   |            |
| ments in a Large Volume Bead Bed Between 225 and 300 K-M. G.          |            |
| Langseth, F. E. Ruccia, and A. E. Wechsler                            | 256        |
| Nomenclature                                                          | 257        |
| Bead Tank Conductivity Measurements Using a Line Source               | 259        |
| Heat Flow Probe and Line Source Probe Comparisons                     | 270        |
| Conclusions                                                           | 273        |
| High Performance Thermal Insulation for an Implantable Artificial     | 275        |
| Heart-D. R. Stoner, R. C. Svedberg, J. W. H. Chi, and T. Vojnovich    | 275        |
| Thermal Test Apparatus                                                | 277        |
| Fabrication of Insulation Systems<br>Experimental Results             | 280<br>281 |
| Discussion                                                            | 281        |
| Study of Thermophysical Properties of Constructional Materials in a   | 203        |
| Temperature Range from 10 to 400 K-A. V. Luikov, A. G. Shash-         |            |
| kov, L. L. Vasiliev, S. A. Tanaeva, Yu. P. Bolshakov, and L. S.       |            |
| Domorod                                                               | 290        |
| Nomenclature                                                          | 290        |
| Experimental Procedure                                                | 292        |
| Analysis and Measurement of the Heat Transmission of Multi-Component  | 272        |
| Insulation Panels for Thermal Protection of Cryogenic Liquid          |            |
| Storage Vessels—J. G. Bourne and R. P. Tye                            | 297        |
| Materials and Systems Evaluated                                       | 299        |
| Experimental Details                                                  | 300        |
| Analytical Model                                                      | 301        |
| Results and Discussion                                                | 304        |
| Appendix                                                              | 307        |
| Reference Materials of Low Thermal Conductivity                       | 307        |
| Questionnaire                                                         | 309        |
|                                                                       |            |