Fatigue and Fracture Toughness-CRYOGENIC BEHAVIOR

FATIGUE AND FRACTURE TOUGHNESS-CRYOGENIC BEHAVIOR

A symposium presented at the Seventy-sixth Annual Meeting AMERICAN SOCIETY FOR TESTING AND MATERIALS Philadelphia, Pa., 24–29 June 1973

ASTM SPECIAL TECHNICAL PUBLICATION 556 C. F. Hickey, Jr., and R. G. Broadwell symposium cochairmen

List price \$20.25 04-556000-30

AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race Street, Philadelphia, Pa. 19103

© by American Society for Testing and Materials 1974 Library of Congress Catalog Number: 74-76067

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

> Printed in Baltimore, Md. July 1974

Foreword

This special technical publication consists of eight papers presented during the symposium on Fatigue and Fracture Toughness of Metallic Materials at the Seventy-sixth Annual Meeting of the American Society for Testing and Materials held in Philadelphia, Pa., 24-29 June 1973. The symposium was sponsored by the Low Temperature Panel of the American Society for Testing and Materials, American Society of Mechanical Engineers, and Metal Properties Council Joint Committee on the Effect of Temperature on the Properties of Metals. C. F. Hickey, Jr., Army Materials and Mechanics Research Center, and R. G. Broadwell, Titanium Metals Corporation of America, presided as symposium cochairmen.

Related ASTM Publications

- Fracture Toughness Testing at Cryogenic Temperature, STP 496 (1971), \$5.00 (04-496000-30)
- Fracture Toughness Evaluation by R-Curve Methods, STP 527 (1973), \$9.75 (04-527000-30)
- Progress in Flaw Growth and Fracture Toughness Testing, STP 536 (1973), \$33.25 (04-536000-30)

Contents

Introduction	1
Fracture Toughness of High-Strength Alloys at Low Temperature-J. E. Campbell	
Aluminum Alloys	4
Titanium Alloys	7
Steels	8
Inconel Alloy 718	15
Fatigue Crack Growth Rate Data	15
The Challenge for the Future	16
Discussion	21
Alloy, Texture, and Microstructural Effects on the Yield Stress and Mixed Mode Fracture Toughness of Titanium-H. W. Rosenberg and W. M. Parris	26
Procedures	28
Experimental Results	31
Discussion	34
Conclusions	41
Flexural Fatigue Testing of Titanium Forging Material in Liquid Hydro-	
gen-N. R. Adsit, P. Dessau, and W. E. Witzell	44
Material	45
Procedure	46
Results	49
Statistical Treatment of the Data	49
Comparison of Results	54
Toughness Data for Monolithic High-Hardness Steel-C. F. Hickey, Jr.	55
Materials	56
Test Procedure	56
Results and Discussion	59
Conclusions	66
Fatigue and Fracture Characteristics of High-Hardness, Laminar Composite Steel-R. Chait, C. F. Hickey, Jr., and C. H. Curll	68
Materials and Test Procedure	69
Results and Discussion	72
Summary and Conclusions	82
Investigation of the Plastic Fracture of High-Strength Aluminum Alloys-R. H. Van Stone, R. H. Merchant, and J. R. Low, Jr.	93
Materials	94

Fractographic Study	96
Failure of the Large Second Phase Particles	97
Quantitative Metallography of Second-Phase Particles	105
Identification of the Second Phase Particles	108
Transmission Electron Microscopy	111
Discussion	115
Conclusions	123
Large-Scale Fracture Toughness Tests of Thick 5083-0 Plate and 5183 Welded Panels at Room Temperature, -260 and -320°F-J. G. Kaufman, F. G. Nelson, and R. H. Wygonik	125
Material	126
Weld Preparation and Qualification	126
Test Procedure	128
Results	137
Conclusions	156
Fatigue Crack Growth in Aluminum Alloy 5083-0 Thick Plate and Welds for Liquefied Natural Gas Tanks-R. A. Kelsey, G. E. Nordmark, and J. W. Clark	159
Material	161
Compact Tension Specimens	162
Surface-Flawed Plate Specimens	168
Predicting Growth of Cracks Under Spectrum Loading	176
Predicted Flaw Growth in Test Specimens	183
Summary and Conclusions	184