- (III) MANUAL ON LASTIC-PLASTIC FRACTURE

Laboratory Test Procedures

JAMES A. JOYCE

Manual on Elastic-Plastic Fracture: Laboratory Test Procedures

James A. Joyce

ASTM Manual Series: MNL 27 ASTM Publication Code Number (PCN): 28-027096-30

100 Barr Harbor Drive, West Conshohocken, PA 19428-2959

Library of Congress Cataloging-in-Publication Data

Joyce, J. A. (James Albert) , 1945-Manual on elastic-plastic fracture : laboratory test procedure / James A. Joyce. (ASTM manual series ; MNL 27) "ASTM publication code number (PCN): 28-027096-30." Includes bibliographical references and index. ISBN 0-8031-2069-9 1. Fracture mechanics—Handbooks, manuals, etc. 2. Elasticity—Handbooks, manuals, etc. 3. Plasticity—Handbooks, manuals, etc. 4. Materials—Testing—Handbooks, manuals, etc. I. Title. II. Series. technical publication ; 1278. TA409.J69 1996 620.1'126—dc20 96-17228

CIP

Copyright © 1996 AMERICAN SOCIETY FOR TESTING AND MATERIALS. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

Photocopy Rights

Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by the American Society for Testing and Materials (ASTM) provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: 508-750-8400 online: http://www.copyright.com/.

NOTE: This manual does not purport to address (all of) the safety problems associated with its use. It is the responsibility of the user of this manual to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Printed in Scranton, PA May 1996

Foreword

THIS PUBLICATION, Manual on Elastic-Plastic Fracture: Laboratory Test Procedures, was approved by ASTM Committee E-8 on Fatigue and Fracture. This is Manual 27 in ASTM's manual series. The author, James A. Joyce, is employed at the U.S. Naval Academy, Mechanical Engineering Department, Annapolis, MD.

iii

Contents

Chapter 1: Introduction		1
Chapter 2: Overview of Elastic-Plastic Fracture		2
Chapter 3: Analysis		4
3.1 <i>J</i> -integral and δ Equations	4	
3.2 Limits of Applicability	6	
3.3 Compliance Equations	7	
Chapter 4: Apparatus		9
4.1 Fixtures	9	
4.2 Transducers and Electronics	11	
4.3 Recording Equipment	16	
Chapter 5: Specimen Preparation		17
5.1 Specimen Machining	17	
5.2 Precracking	18	
Chapter 6: Basic Test Procedure		22
6.1 Running the Test	22	
6.2 Measuring the Crack	23	
6.3 Analysis for $J_{\rm lc}$ Using Basic Test Data	23	
6.4 The Multi-specimen Method	23	
6.5 Evaluation of J_o	24	
6.6 Analysis for J_c or J_u Using Basic Test Data	27	
6.7 Analysis for δ_i , δ_u , or δ_m Using the Basic Test Data	28	
6.8 Summary of the Basic Method	28	
Chapter 7: Advanced Test Procedure		30
7.1 Running the Test	30	
7.2 Analysis of Advanced Test Data	32	
Chapter 8: Qualification of the Test Results		35
8.1 Qualification of the Data	35	
8.2 Apparatus Requirements	35	
8.3 Transducer Requirements	35	
8.4 Specimen Preparation Requirements	35	
8.5 Test Procedure Requirements	36	
8.6 Additional Requirements	36	
8.7 Summary	36	
8.8 Qualifying the <i>J-R</i> Curve	37	
8.9 Qualifying J_{Ic}	37	

8.10 Qualifying J_c 8.11 Qualifying δ_c and δ_u	37 38	
Chapter 9: Future Developments in Elastic-Plastic Fracture Testing		39
References		41
Appendix A: Software Listings		45
A1 Unloading Compliance Data Acquisition Program	48	
A2 Initialization Fit Program	56	
Appendix B: ASTM Fracture Test Standards		65
Standard E 1737	67	
Standard E 1290	91	
Index		101

ABOUT THE AUTHOR

Dr. JAMES A. JOYCE is currently Professor of Mechanical Engineering at the U.S. Naval Academy, Annapolis, Maryland. His research has been in the area of fatigue and fracture of elastic-plastic metals including the laboratory evaluation of fatigue and fracture toughness properties and in the application of these properties to Navy ships, shipboard components, and to commercial nuclear power plants and piping.

Dr. Joyce holds a B.S. degree in Theoretical and Applied Mechanics from the University of Illinois and M.S. and Sc.D. degrees in Mechanical Engineering from MIT.

The author is an active member of ASTM's Committee E08 on Fatigue and Fracture Mechanics, receiving the ASTM Award of Merit for superior technical contributions in the development and standardization of experimental methods to characterize the elastic-plastic fracture toughness of metals, and for fracture mechanics education. He is a member of ASME and is active in Section XI of the ASME Boiler and Pressure Vessel Code Committee.