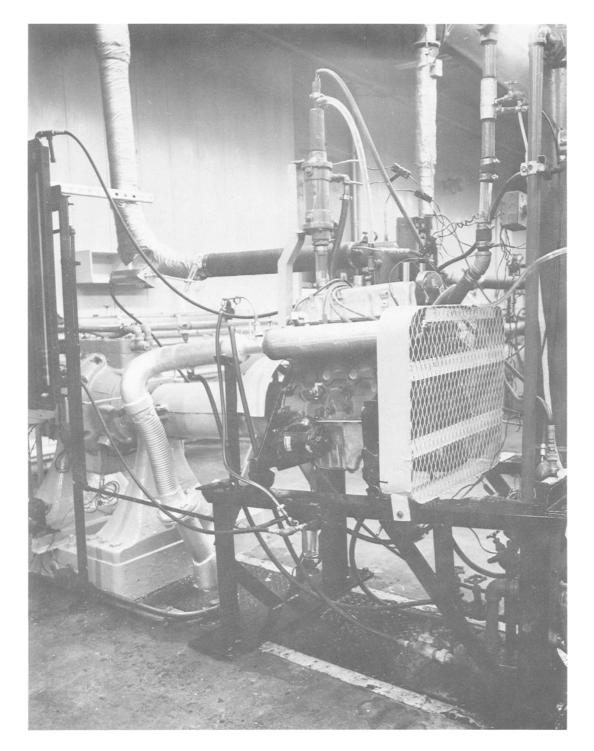
STP315H3S-EB/Jul. 1983 STP315H-3 V-D

A1 SEQUENCE V-D TEST CORRELATION TO FIELD DATA

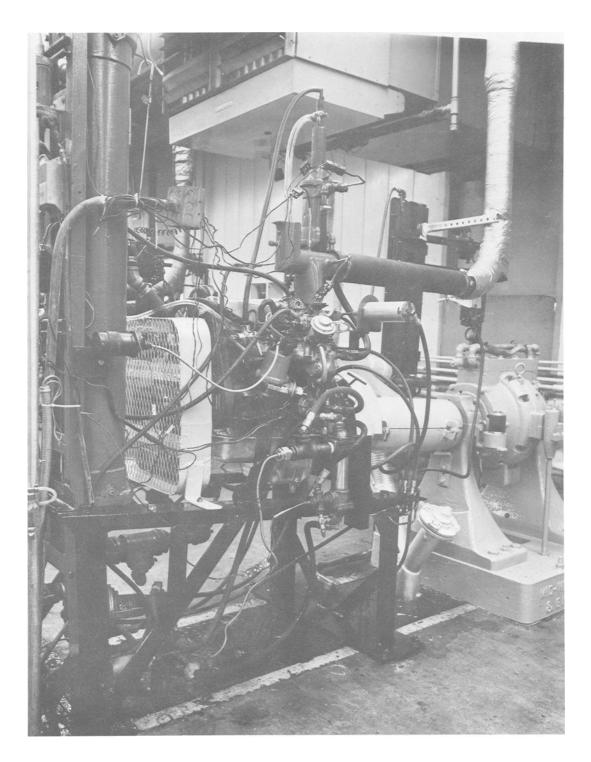
			Deposit and Wear Data Comparison						
Oil	D'ald Date Date 's date	Fie	ld Results		V-D Results				
	Field Data Description		Mean	Std. Dev.	1	Mean	Std. Dev.		
903	3 taxicabs each oil, Chrysler 6 cylinder, leaded fuel, 6000 mi. drain interval, total test length 45,000 mi. Note- 903 field data differs from 911 field data at the 95% C. L. by 0.4 Sludge, no difference in Varnish.	Sludge Varnish PSV Cyl. Bore Wear Sludge Varnish PSV Cyl. Bore	8.5 4.9 5.6 2.0 6.1 3.7 5.9 3.4	0.12 0.12 0.06 	Sludge Varnish PSV Avg. Cam Lobe Wear Sludge Varnish PSV Avg. Cam	9.59 7.85 6.89 0.5 9.26 5.31 6.74 1.5	0.09 0.28 0.23 0.2 0.2 0.18 0.34 0.03 0.8		
913		Wear) Sludge Varnish PSV Cam.)	7.7 4.7 6.1	0.56 0.41 0.14	Lobe) Wear Sludge Varnish PSV Avg.)	9.50 6.51 7.37	0.12 0.31 0.40		
914	4 taxicabs Chevrolet 250 CID 6 cylinder, un- leaded fuel, 12,000 mile oil and fil- ter drain interval, test length 57,000 miles. 5 taxicabs Note— 913 field data differs from 914 field data at the 95% C. L. by 0.3 Sludge, 0.8 Varnish.	Wear Lifter Wear Sludge Varnish PSV Cam.	3.0 0.2 8.7 6.3 6.3	0.37 0.63 0.47	Cam Lobe Wear Sludge Varnish PSV Avg.	0.5 9.63 8.00 7.51	0.2 0.07 0.39 0.26		
		Wear Lifter Wear	2.8 0.2	-	Cam Lobe Wear	0.5	0.1		

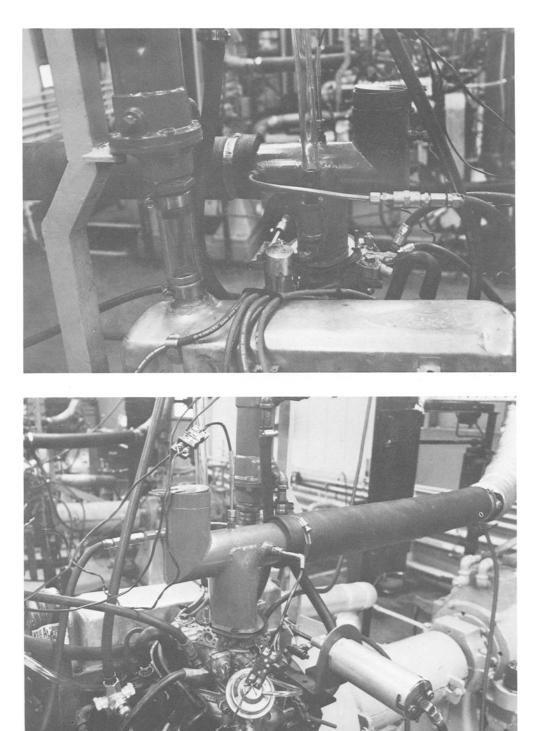
A2 TEST PRECISION DATA NOVEMBER 1982


NUMBER						PIST					
	OF	SLU	DGE	VARN	ISH	VARN	ISH	MAX. CA	AM W.*	AVG. C	AM W.*
OIL	TESTS	AVG.	б	AVG.	б	AVG.	δ	AVG.	δ	AVG.	ð
127-5	14	7.85	1.17	7.98	.52	8.10	.35	10.71	5.80	5.79	1.69
127-6	18	8.23	.74	7.91	.41	8.21	.24	9.20	2.38	5.31	1.48
200-3	105	9.59	.07	6.68	.38	6.93	.34	2.39	2.28	1.13	.71
2 00-4	13	9.60	.04	6.95	.20	6.87	.27	2.52	2.44	1.01	.62
903	8	9.58	.08	7.85	.24	7.08	.37	.72	.31	.53	.22
903-1	31	9.61	.05	7.28	.35	6.70	.23	.57	.25	.39	.19
911-1	23	9.32	.29	6.13	.57	6.96	.28	3.61	3.68	1.51	1.31
911-2	8	9.45	.05	6.26	.31	7.09	.14	3.46	4.13	1.04	.55
913	33	9.38	.18	7.47	.78	7.79	.42	.98	.75	.61	.36
913-1	45	9.37	.12	6.75	.75	7.63	.42	.56	.24	.39	.13
914	35	9.64	.07	8.20	.36	7.64	.35	.64	.31	.41	.16
915	13	8.03	1.06	6.11	1.20	7.09	.40	6.96	2.87	2.59	1.32
915-1	26	8.60	.56	6.40	1.04	7.32	.40	5.06	3.84	1.94	1.81
916	17	9.61	.08	6.82	.33	6.73	.25	.74	.18	.54	.18
916-1	73	9.61	.06	7.11	.41	6.82	.36	.76	.69	.45	.18
9 2 1	39	8.97	.62	8.66	.22	7.73	.22	5.61	3.33	2.56	1.47
923	38	9.55	.08	6.76	.40	7.14	.31	.93	.74	.54	.33
923-1	50	9.56	.05	6.41	.34	6.99	.26	.61	.28	.39	.16

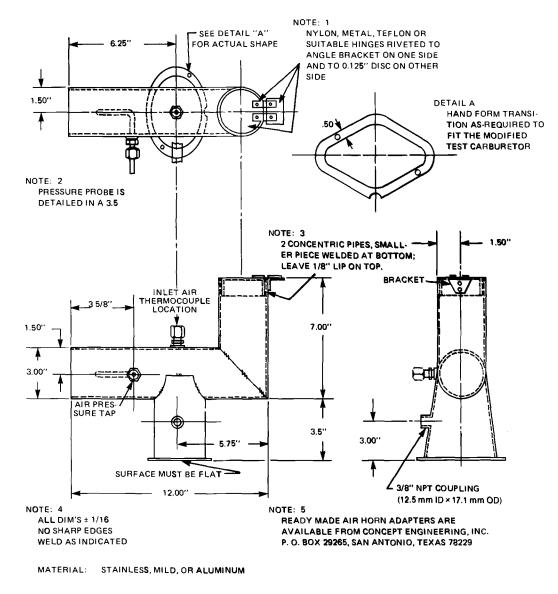
*Expressed in thousandths of an inch according to test convention.

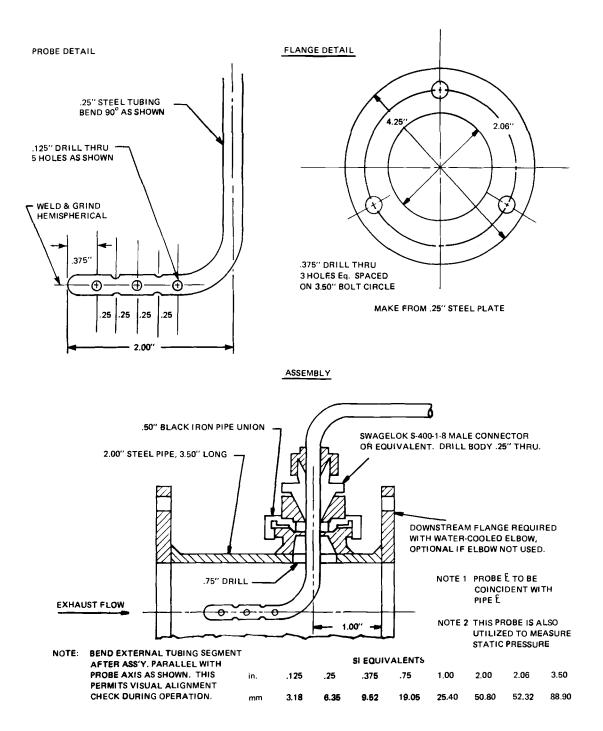
A3. Print Specifications and Photographs of Apparatus -


- A3.1 Typical Test Stand, Left Forward View (photograph)
- A3.2 Typical Test Stand, Right Forward View (photograph)
- A3.3 Carburetor Air Supply System, Air Horn Adapter (photographs)
- A3.4 Carburetor Air Horn Adapter (detail specification)
- A3.5 Exhaust Gas Sample Probe and Flange (detail specification)
- A3.6 Exhaust Gas Analysis System (detail specification)
- A3.7 Typical Engine Cooling System Schematic (detail specification)
- A3.8 Typical Engine Cooling System, Venturi Flowmeter and Inverted U-Tube Manometer (photograph)
- A3.9 Typical Engine Cooling System, Flow Control Valve, Temperature Control Probe, Expansion Tank, Radiator Cap (photograph)
- A3.10 Engine Cooling System, Water Pump, Marine Manifold, Thermostat Housing (photograph)
- A3.11 Engine Cooling System, Intake Manifold Cap, Blowby Heat Exchanger, Fittings and Hoses (photograph)
- A3.12 Engine Cooling System, Thermostat Housing with Thermocouple (photograph)
- A3.13 Oil Cooling System Specifications
- A3.14 Oil Cooling System, Required Heat Exchanger Mounting, Typical Hoses and Fittings (photograph)
- A3.15 Oil Cooling System, Adapter Housing at Engine with Typical Fittings for Thermocouple and Pressure Taps (photograph)
- A3.16 Oil Cooling System, Oil Filter Fitted for Breakin (photograph)
- A3.17 Closed Crankcase Ventilation System, Required Fittings and Parts Configuration (detail specification)
- A3.18 Fabricated Oil Separator for Engine Ventilation System (detail specification)
- A3.19 Engine Ventilation System, Blowby Heat Exchanger and Fittings (photograph)
- A3.20 Engine Ventilation System, Three-way Valve (photograph)
- A3.21 Engine Ventilation System, Blowby Heat Exchanger with Thermocouple Installed (photograph)
- A3.22 Carburetor Modification Details (detail specification)
- A3.23 Carburetor Illustration Holley Model 5200 (exploded view)
- A3.24 Carburetor Mixture Adjustment Screw (detail specification)
- A3.25 EGR Fittings at Marine Manifold (photograph)
- A3.26 Camshaft Baffle Fabrication (detail specification)
- A3.27 Engine Oil Pan with Fabricated Drain Plug (photograph)
- A3.28 Rocker Arm Cover Modification (detail specification)
- A3.29 Rocker Arm Cover and Cam Baffle (photographs)
- A3.30 Pulley and V-Belt Arrangement (photograph)
- A3.31 Typical Idler Pulley, Rear View (photograph)
- A3.32 -- Crankcase Oil Fill Tube and Cap (photograph)
- A3.33 Typical Adjustable Dipstick (photograph)
- A3.34 Typical Flywheel Timing Index (photograph)
- A3.35 Distributor Modification (detail specification)
- A3.36 -- Oil Pump Calibration Apparatus (detail specification)
- A3.37 Oil Pump Calibration Apparatus (photographs)
- A3.38 Cam Lobe Flow Rating Apparatus (detail specification)
- A3.39 Typical Cam Lobe Flow Rating Apparatus (photograph)
- A3.40 -- PCV Valve Flow Test Stand (detail specification)
- A3.41 Typical PCV Valve Flow Apparatus (photograph)
- A3.42 Cylinder Block Pre-Stress Plate (detail specification)
- A3.43 Piston Ring Positioner (detail specification)
- A3.44 Positioning Ladder for Bore Micrometer (detail specification)

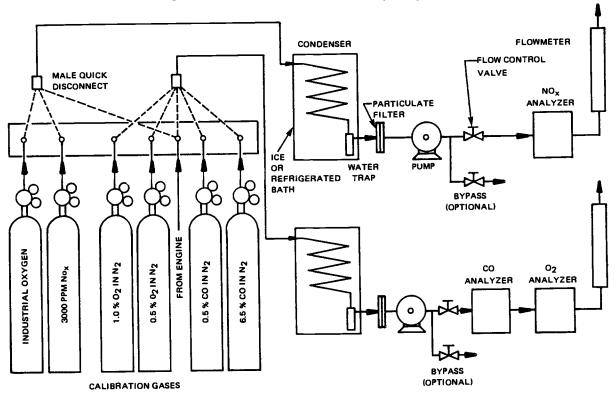

A3.1 TYPICAL TEST STAND RIGHT FORWARD VIEW

46


A3.2 TYPICAL TEST STAND LEFT FORWARD VIEW



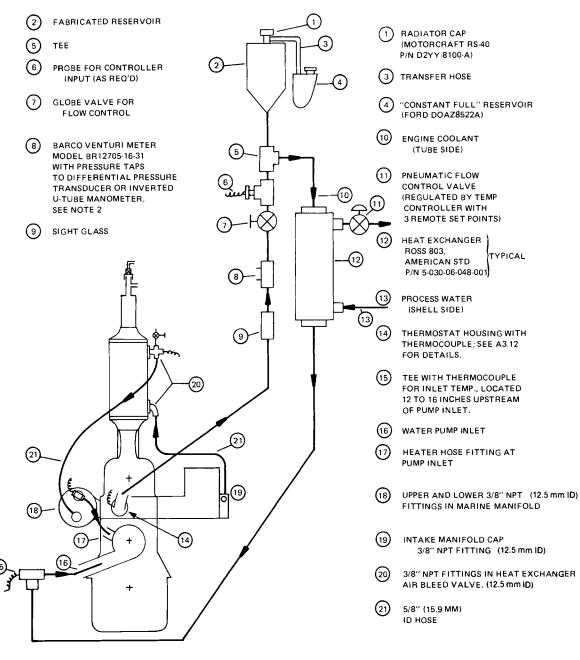
A3.3 CARBURETOR AIR SUPPLY SYSTEM AIR HORN ADAPTER


A3.4 CARBURETOR AIR HORN ADAPTER

SI EQUIVALENTS													
in 1/	16	1/8	0.125	3/ 8	0.50	1.5	3.0	3.5	3-5/8	5.75	6.25	7.0	12.0
mm 1.	.6	3.2	3.2	9.5	12.7	38.1	76.2	88.9	92.1	146.0	158.8	177.8	304.8

A3.5 EXHAUST GAS SAMPLE PROBE AND FLANGE

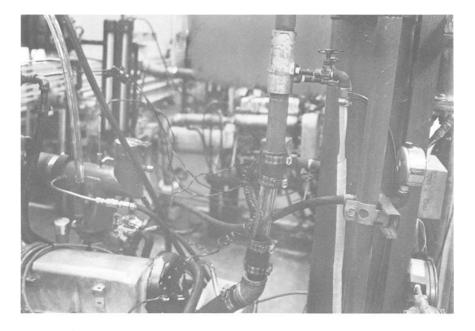
A3.6 Specification for Exhaust Gas Analysis System -


A3.6.2 — The typical system shown utilizes an ice bath condenser with a coil of 1/4 in. (0.64 cm) stainless steel tubing designed to adequately reduce moisture to a dew point of $34^{\circ}F(1^{\circ}C)$. If mechanical refrigeration is employed, the bath temperature should be controlled to $34 \pm 2 F(1 \pm 1^{\circ}C)$. Flow of both exhaust and calibration gases should be identical and within specifications of the instruments. A bypass and a larger pump may be desirable to improve instrument response time when longer sample lines from the engine are needed. An air conditioned chamber for instrumentation is required if ambient temperatures are above the maximum recommended by instrument manufacturers.

A3.6.3 Required Calibration Gases -

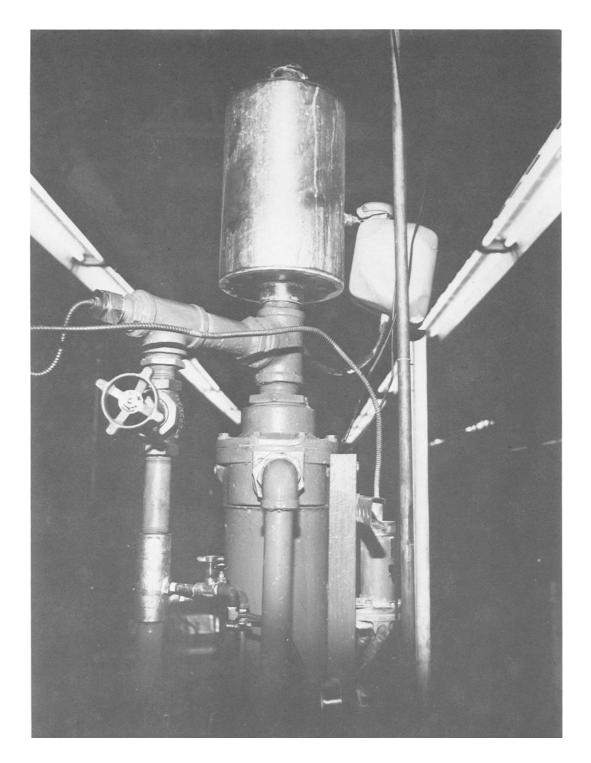
Nominal 3000 ppm NOx, balance N ₂ Nominal 6.5% CO, balance N ₂ Nominal 0.5% CO, balance N ₂ Nominal 1.0% O ₂ , balance N ₂ Nominal 0.5% O ₂ , balance N ₂	Manufactured to $\pm 5\%$ Certified to $\pm 2\%$
Optional Gases (for zero standard): N_2 for O_2 and CO analyzers O_2 for NOx analyzer	Industrial Grade

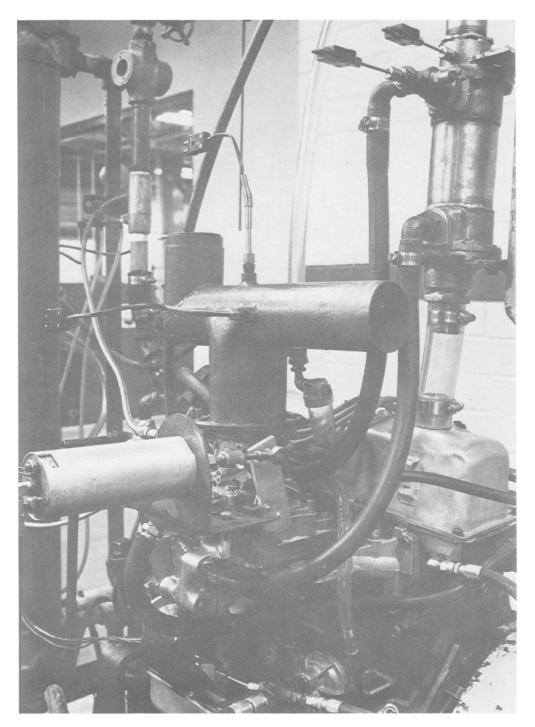
A3.6.4 — If the optional gases are not used as zero standards (to calibrate the zero readings of the analyzers), then the CO calibration gases may be used to "zero" the O_2 analyzer, the O_2 calibration gases may be used to "zero" the CO analyzer, and bottled air may be used to "zero" the NOx analyzer.


A3.7 TYPICAL ENGINE COOLING SYSTEM SCHEMATIC

NOTE 1 - OBSERVE THERMOCOUPLE LOCATIONS; IN THERMOSTAT HOUSING, AT WATER PUMP INLET, AT MARINE MANIFOLD OUTLET, AND AT BLOWBY HEAT EXCHANGER OUTLET.

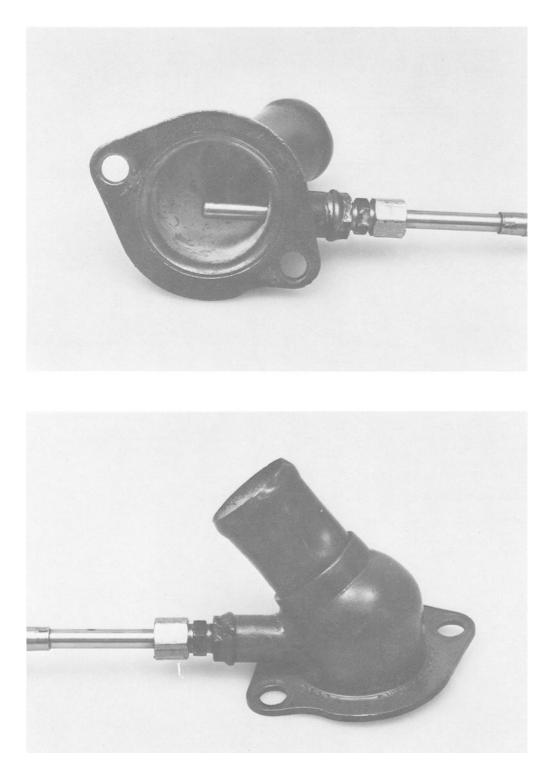
NOTE 2 - AVAILABLE FROM: AEROQUIP CORPORATION AMB DIVISION/INDUSTRIAL PRODUCTS 300 SOUTHEAST AVE. JACKSON, MICHIGAN 49203

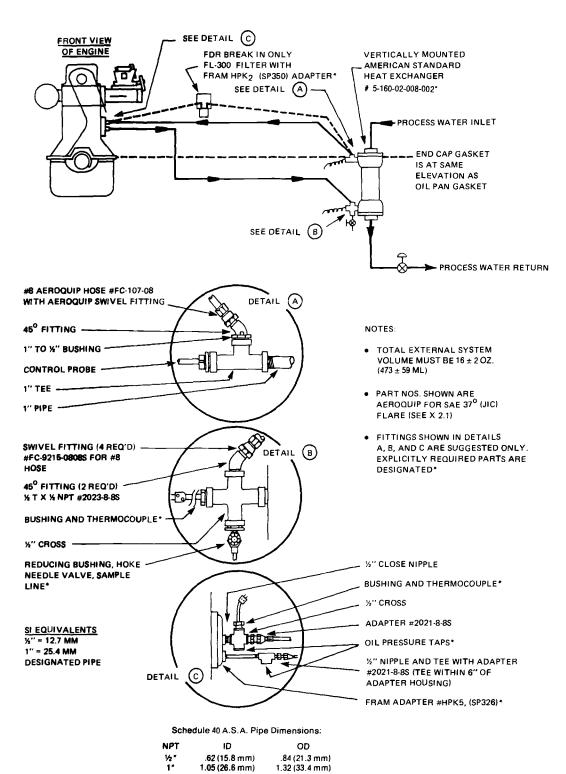

A3.8 TYPICAL ENGINE COOLING SYSTEM VENTURI FLOWMETER INVERTED U-TUBE MANOMETER

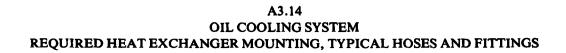


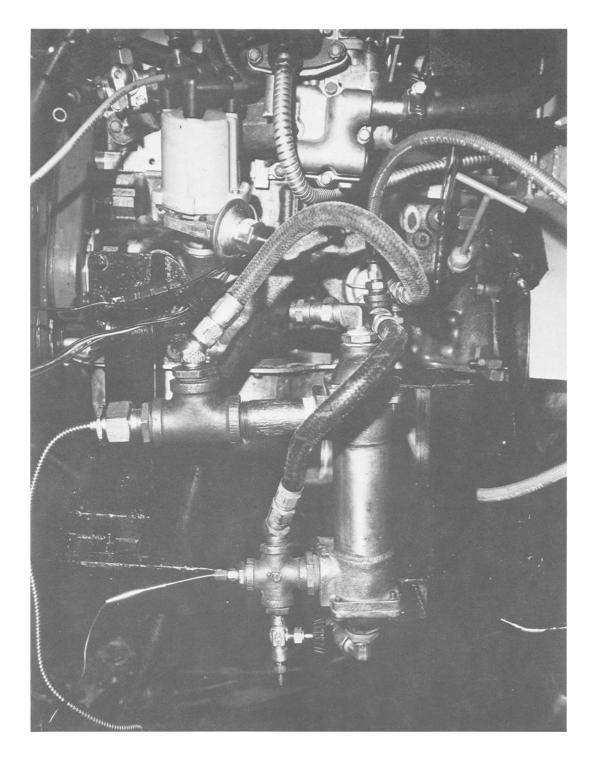
53

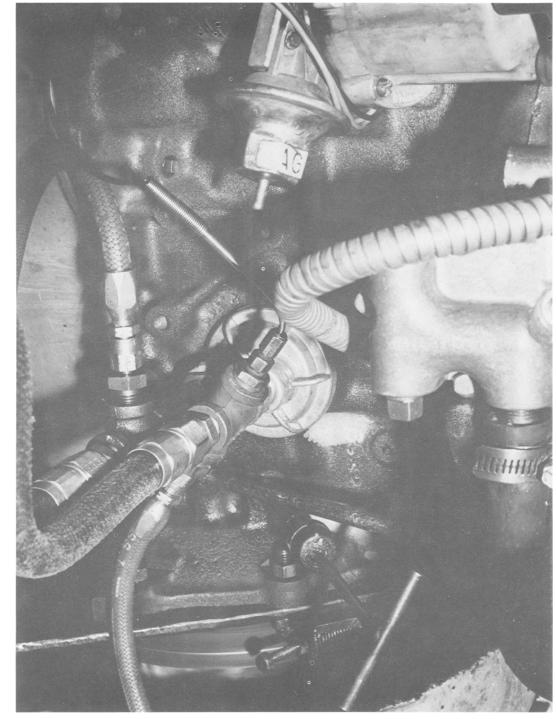
A3.9 TYPICAL ENGINE COOLING SYSTEM FLOW CONTROL VALVE, TEMPERATURE CONTROL PROBE, EXPANSION TANK, RADIATOR CAP



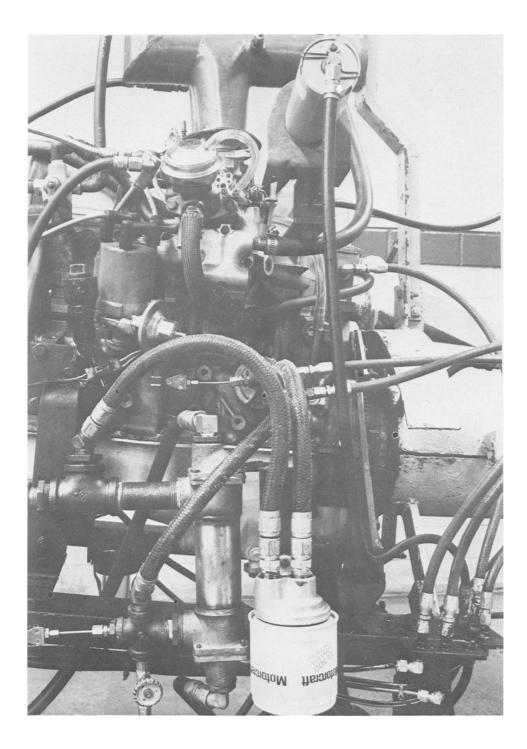

A3.10 ENGINE COOLING SYSTEM, WATER PUMP, MARINE MANIFOLD, THERMOSTAT HOUSING

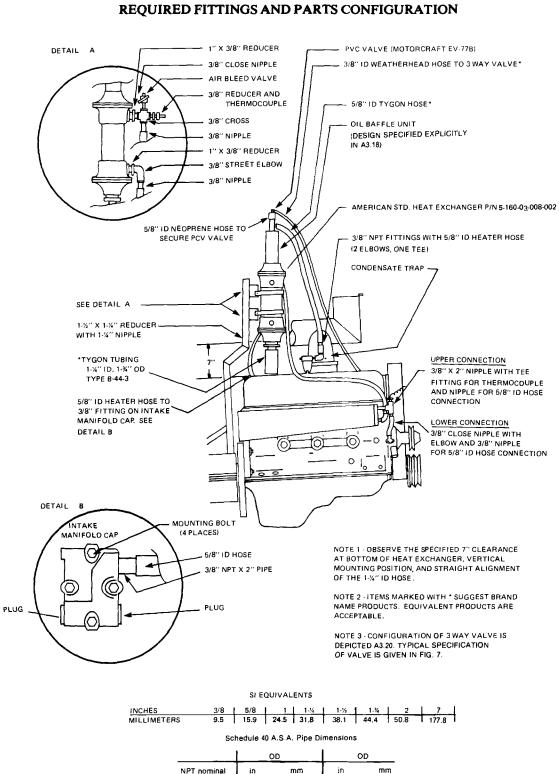

A3.11 ENGINE COOLING SYSTEM INTAKE MANIFOLD CAP, BLOWBY HEAT EXCHANGER, FITTINGS AND HOSES


A3.12 ENGINE COOLING SYSTEM THERMOSTAT HOUSING WITH THERMOCOUPLE



A3.13 OIL COOLING SYSTEM SPECIFICATIONS





A3.15 OIL COOLING SYSTEM ADAPTER HOUSING AT ENGINE WITH TYPICAL FITTINGS FOR THERMOCOUPLE AND PRESSURE TAPS

A3.16 OIL COOLING SYSTEM OIL FILTER FITTED FOR BREAKIN

A3.17 CLOSED CRANKCASE VENTILATION SYSTEM

mm

17.14

33.40

42.16

48.26

12.52

22.64 35.05

40.89

.493

1.050

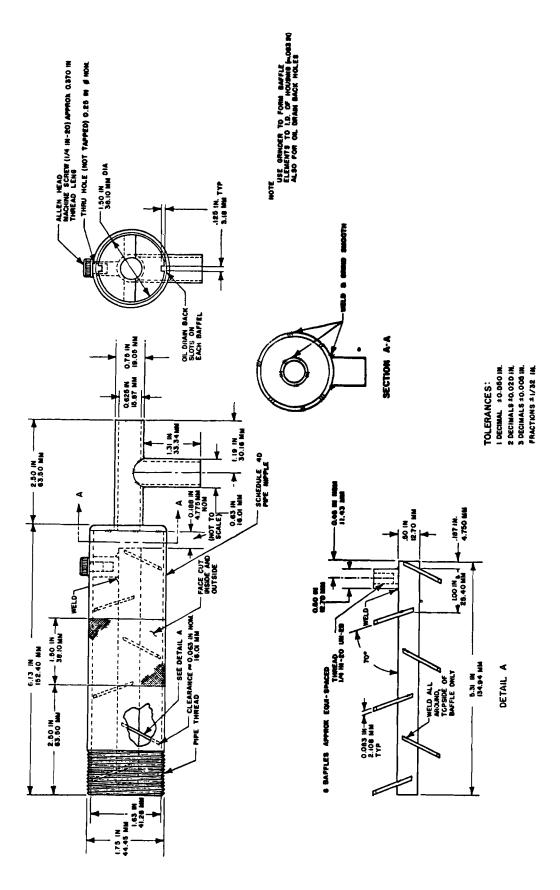
1.380 1.610

in

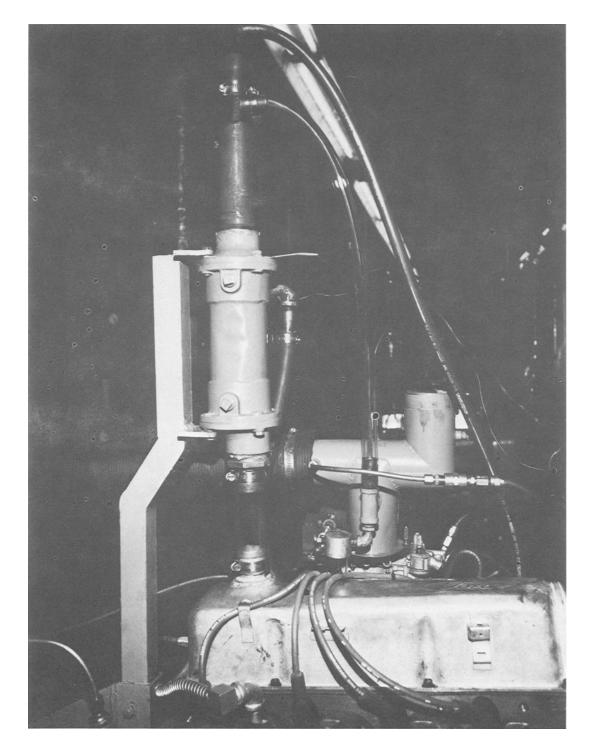
3/8

11/4"

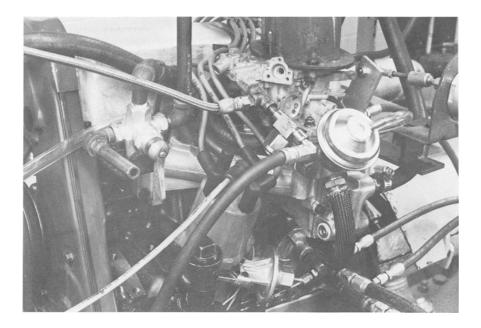
11/2

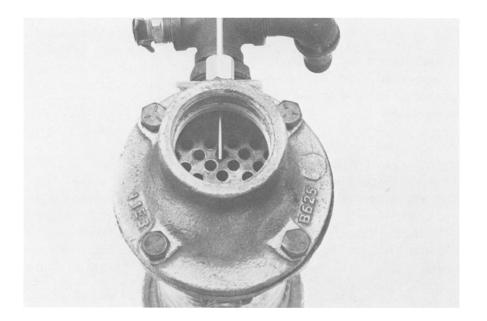

.675

1.315


1 660

1.900


A3.18 FABRICATED OIL SEPARATOR FOR ENGINE VENTILATION SYSTEM


A3.19 ENGINE VENTILATION SYSTEM BLOWBY HEAT EXCHANGER AND FITTINGS

A3.20 ENGINE VENTILATION SYSTEM THREE-WAY VALVE

A3.21 ENGINE VENTILATION SYSTEM BLOWBY HEAT EXCHANGER WITH THERMOCOUPLE INSTALLED

A3.22 Carburetor Modification Details

(THE HOLLEY 6500 FEEDBACK; FORD P/N EOZE-SB, MOTORCRAFT P/N CA-2353, NUMBER ON CARBURETOR BODY R-9218.)

Note: Essentially, the modifications provide for (1) external adjustment of the main metering system, (2) elimination of secondary metering, accelerating pump and choke functions, and (3) the necessary adaptation of the inlet air horn. Attention to detail is essential in order to achieve acceptable fuel distribution.

A3.22.1 — Remove the entire choke assembly including choke plates. Plug all holes left from linkages.

A3.22.2 — Remove the bowl vent solenoid assembly, and the bowl vent diaphragm and activator assembly tap and plug the bowl vent hole with a $\frac{3}{8}$ " (9.5 mm) pipe plug.

A3.22.3 — Tap and plug the choke vacuum passage in the main body with a #6-32 set screw. (Main body, left side).

A3.22.4 — Tap and plug the vacuum passage located to the left of the choke vacuum passage. On the underside of the main body plug the vacuum passage to the choke and the vacuum passage to the bowl vent solenoid with #6-32 set screws.

A3.22.5 — Remove and discard the enrichment valve plunger and diaphragm. Tap and plug vacuum passage to enrichment valve operating rod with $\frac{1}{4}$ -20 Allen Head set screw.

A3.22.6 — Cut away the bowl vent (in front of air horn) to allow installation of carburetor air horn adapter. Do not cut away vent housing above the air bleed. After cutaway is complete, install a thin brass plate to the underside of the cutaway vent. Attach the plate using existing rivets in the area. Drill a $\frac{1}{32}$ " (0.79 mm) hole in the plate to serve as a bowl vent orifice.

A3.22.7 — Remove the idle mixture adjustment screw plug. After removing the screw and spring

cut the housing flush to match front surface of carburetor. This will allow adjustment of the idle mixture.

A3.22.8 — Remove the plug and set screw from the access hole to the enrichment valve. (Top middle of air horn).

A3.22.9 — Drill and tap the enrichment valve access passage for a 5/16-24 SAE bolt approximately 1/2 in. long. Drill and tap a #8-32 thread through the center of the bolt.

A3.22.10 — Fabricate a high-speed fuel mixture screw with a #8-32 thread and tapered end as shown on enclosed diagram. Install the mixture screw with a typical spring as shown.

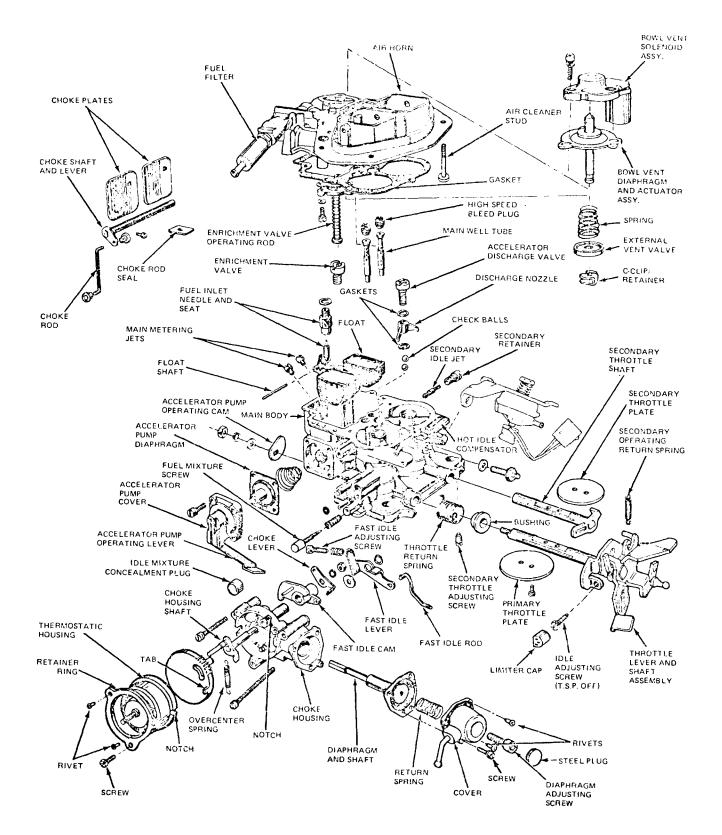
A3.22.11 — Drill the enrichment valve housing to allow adjusting screw to pass through it. Reinstall the enrichment valve housing as it serves as a shield for the mixture adjusting screw.

A3.22.12 — Modify the power valve by removing the inner pin and spring. Tap and plug each side of the upper hole with a #6-32 set screw [$^{3}/_{16}$ in. long (4.8 mm)]. Do not change the diameter of the through passage or upper hole.

A3.22.13 — Plug the secondary high speed orifice and the secondary jet. Do this by drilling and tapping them both and plugging them with $\frac{4}{40}$ set screws. Install the appropriate primary high speed bleed orifice, primary jet and main well tube as follows:

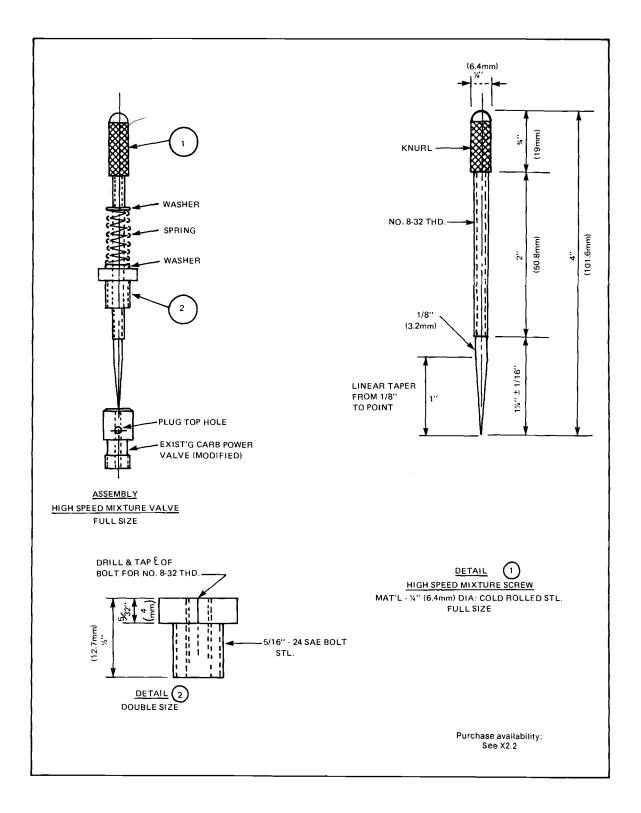
H.S. Bleed	Metering	Main Well
Orifice	Jet	Tube
175	203	93

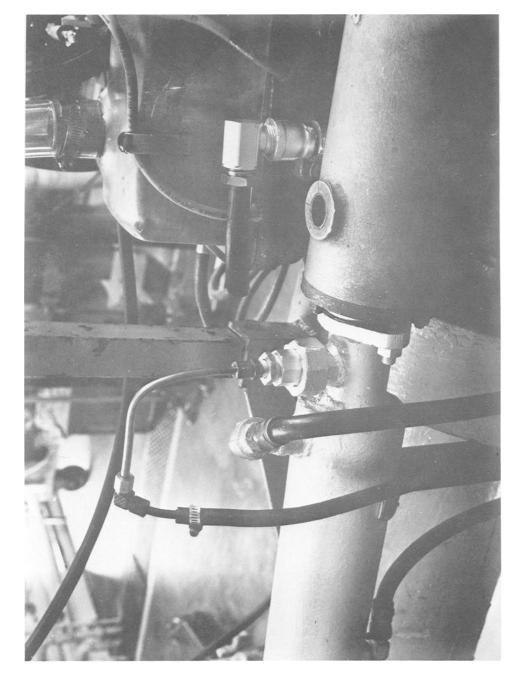
A3.22.14 — Remove the throttle positioner assembly, and reinstall the secondary operating return spring. To prevent operation of the secondary throttle plate remove actuating finger and stop on primary throttle mechanism.


A3.22.15 — Remove accelerator pump diaphragm, cover and spring. Plug off the ac-

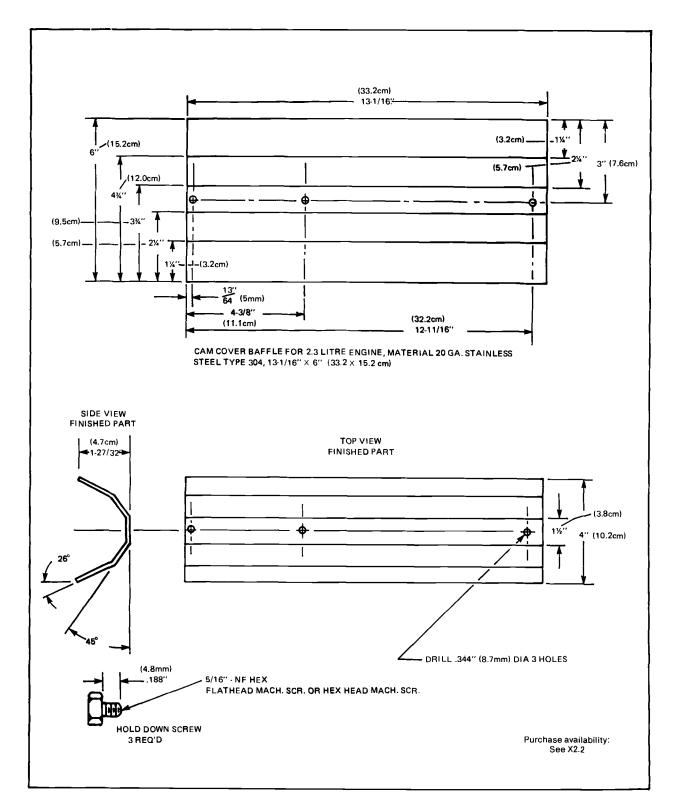
celerator pump fuel passage with a #6-32 set screw. Plug the passage from the bowl to the pump with lead shot. Remove the accelerator discharge valve, nozzle and check balls. Tap to $\#\frac{1}{4}$ -20 and install one check ball and $\#\frac{1}{4}$ -20 Allen Head set screw. This allows quick disassembly, cleaning and reassembly.

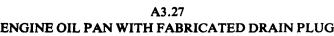
A3.22.16 — Install mixture adjustment screw assembly, float and needle assembly, and adjust using following specifications:

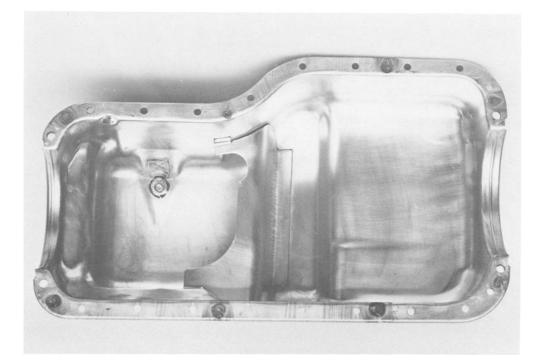

- Dry float level (to inverted) $\frac{9}{16}$ inch.
- Float drop 1 inch (float should not touch bottom of carburetor bowl).
- Idle mixture adjustment screw backed off 2 turns from stop (initial approximate setting).
- Main metering adjustment screw backed off 2 turns from stop (initial approximate setting).


After reassembly of carburetor modification is complete.

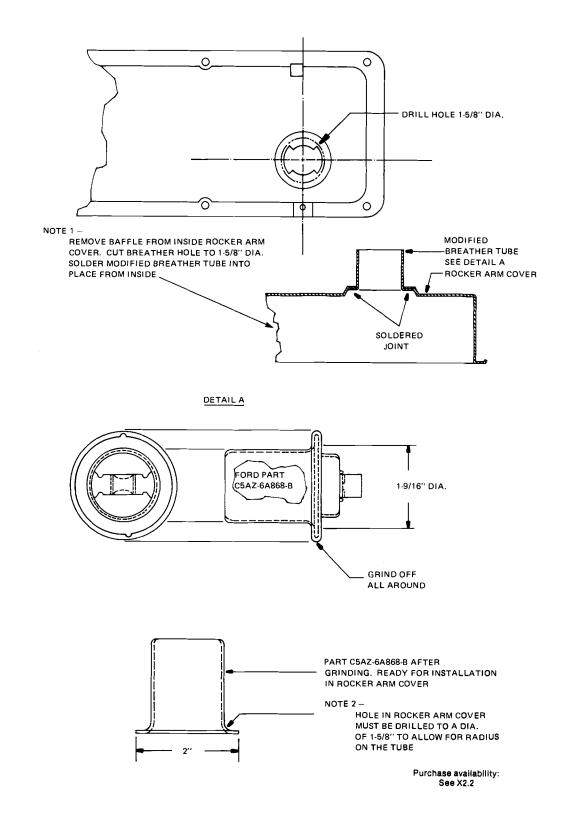
A3.23 CARBURETOR ILLUSTRATION HOLLEY MODEL 5200


A3.24 CARBURETOR MIXTURE ADJUSTMENT SCREW

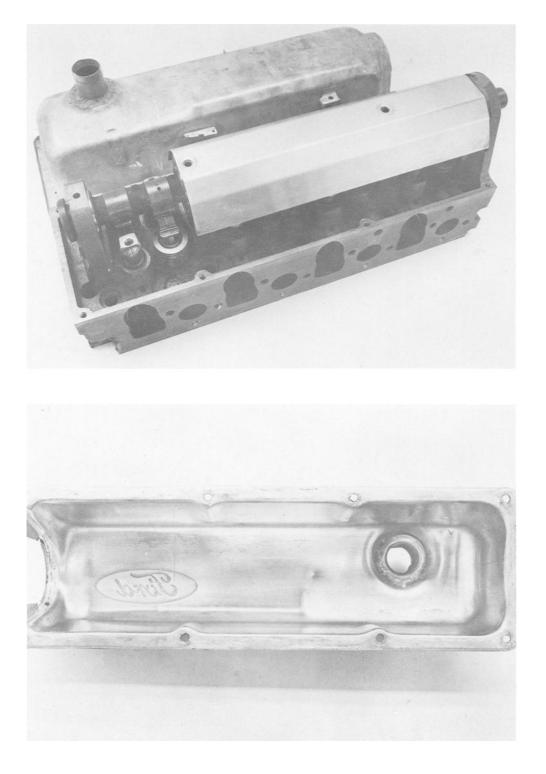



A3.25 EGR FITTINGS AT MARINE MANIFOLD

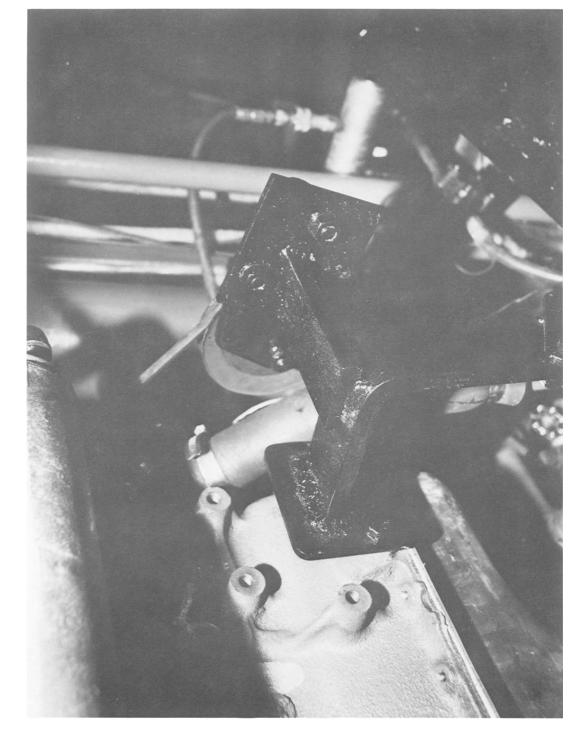
A3.26 CAMSHAFT BAFFLE FABRICATION



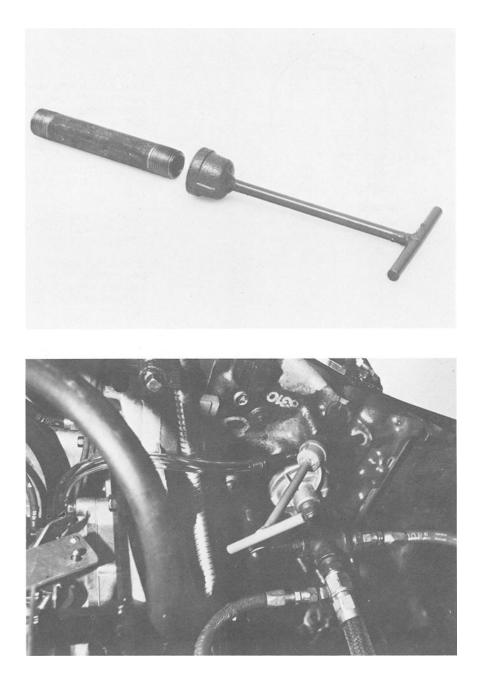
ENGINE OIL PAN WITH FABRICATED DRAIN PLUG

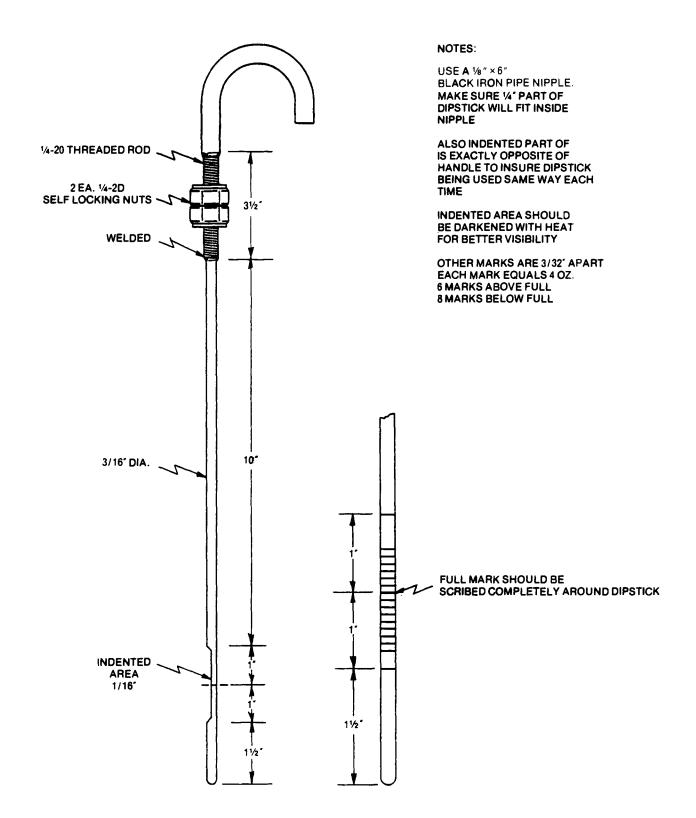


A3.28 ROCKER ARM COVER MODIFICATION

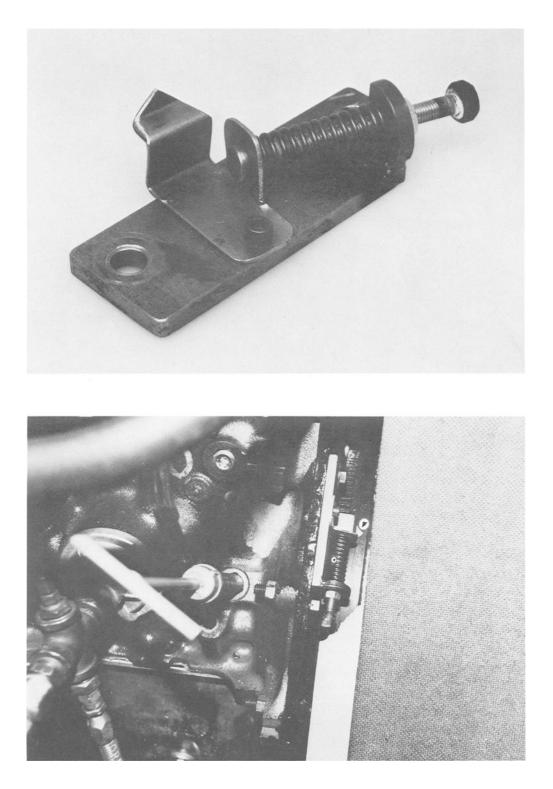


A3.29 ROCKER ARM COVER AND CAM BAFFLE

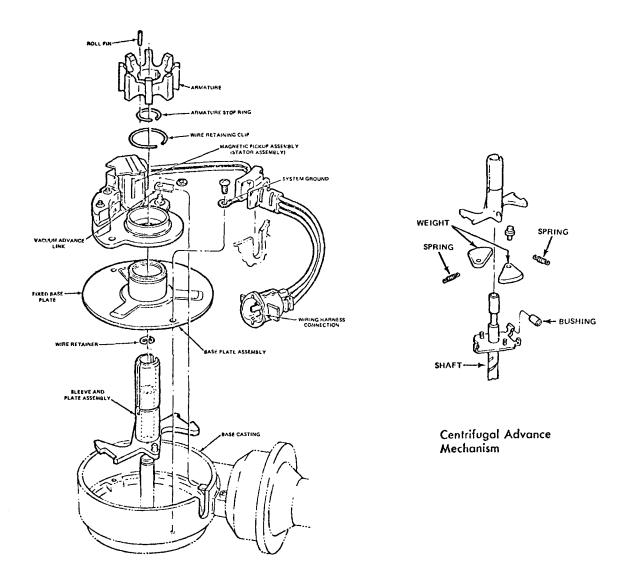




A3.31 TYPICAL IDLER PULLEY, REAR VIEW

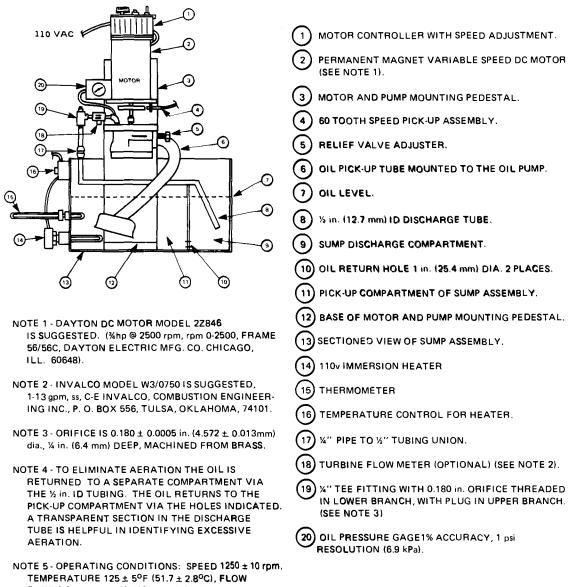

A3.32 CRANKCASE OIL FILL TUBE AND CAP

A3.33 REQUIRED ADJUSTABLE DIPSTICK FABRICATION



A3.34 TYPICAL FLYWHEEL TIMING INDEX

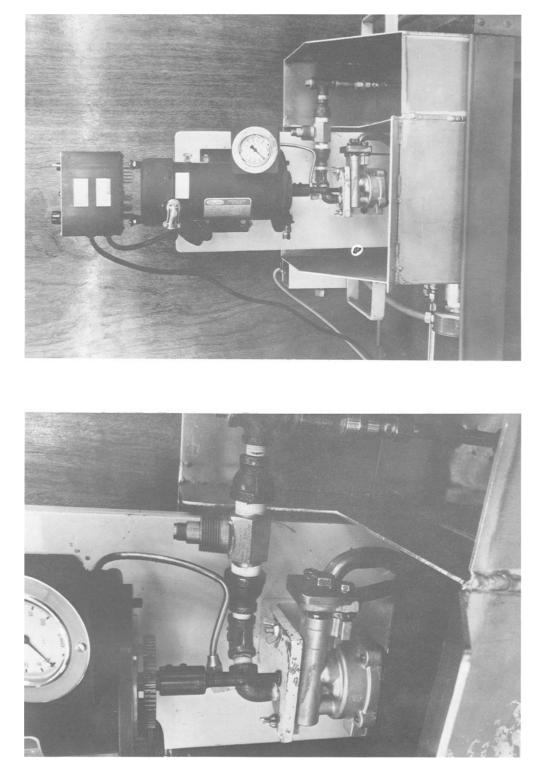
A3.35 DISTRIBUTOR MODIFICATION


Distributor Modification for 36 ± 1° Mechanical Advance

Modification of Mechanical Advance Mechanism

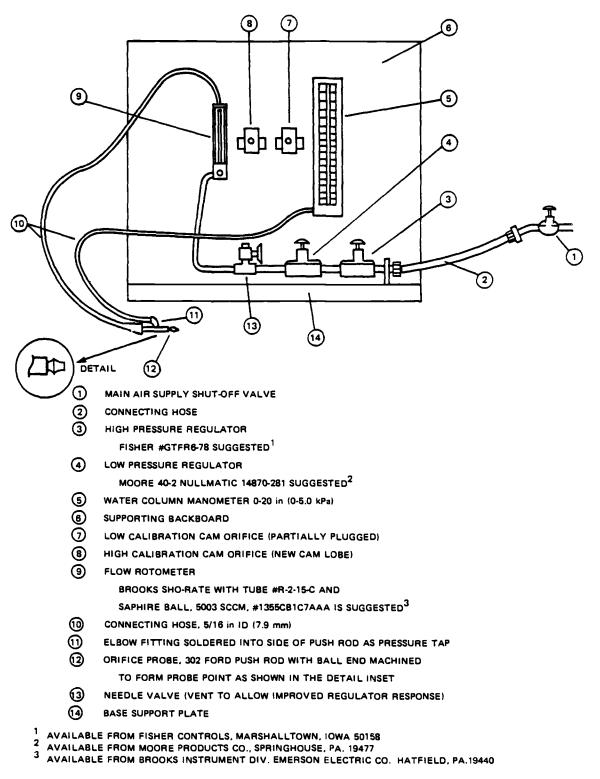
- 1. Remove drive gear and screws holding base plate assembly to allow shaft to be lifted upward.
- 2. Remove and discard the plastic bushing from the stop peg on drive shaft.
- 3. Use a portable high speed grinder to enlarge the travel limit slot of the
- sleeve and plate assembly. Approximately 1/16 inch (1.59 mm) should be ground off so that travel in "advance" direction is increased.
- 4. Check progress by trial and error testing on a distributor machine.
- 5. Adjust springs so that "retard" with decreasing rpm results in 36° spread between 2500 and 750 engine rpm. At 2500 rpm the mechanism should be at the travel limit established by grinding the slot.

A3.36 OIL PUMP CALIBRATION APPARATUS

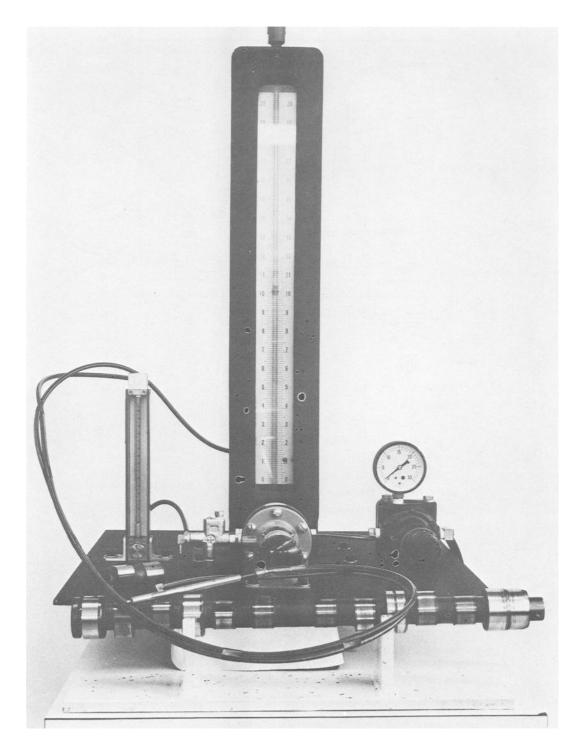


RATE 6.6 ± 0.1 gpm $(0.416 \pm 0.006 \text{ dm}^3/\text{s} \text{ AT} 60 \pm 1 \text{ psi} (413.7 \pm 6.9 \text{ kPa}).$

NOTE 6 - PURCHASE AVAILABILITY: SEE X2.2

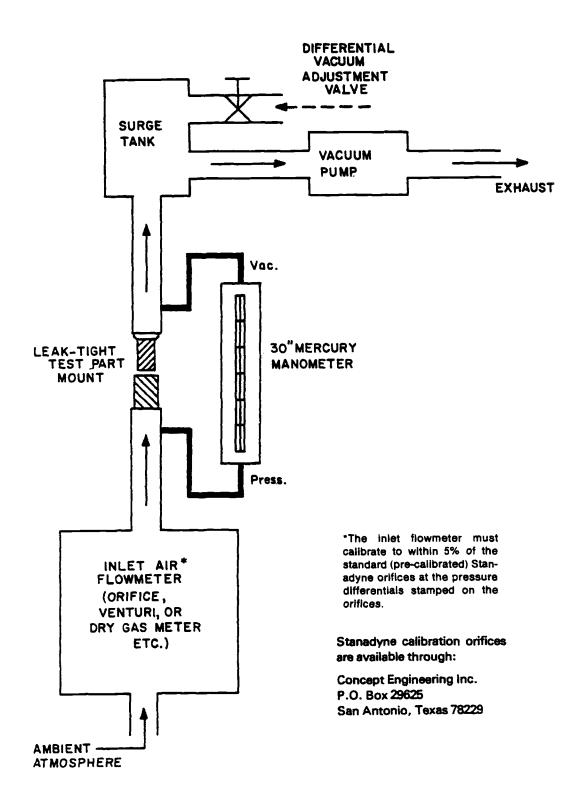

Schedule 40 A.S.A. Pipe Dimensions

		D		D
NPT nominal	in	mm	in	mm
1/4	.540	13.72	.364	9.24
1/2	.840	21.34	.622	15.80

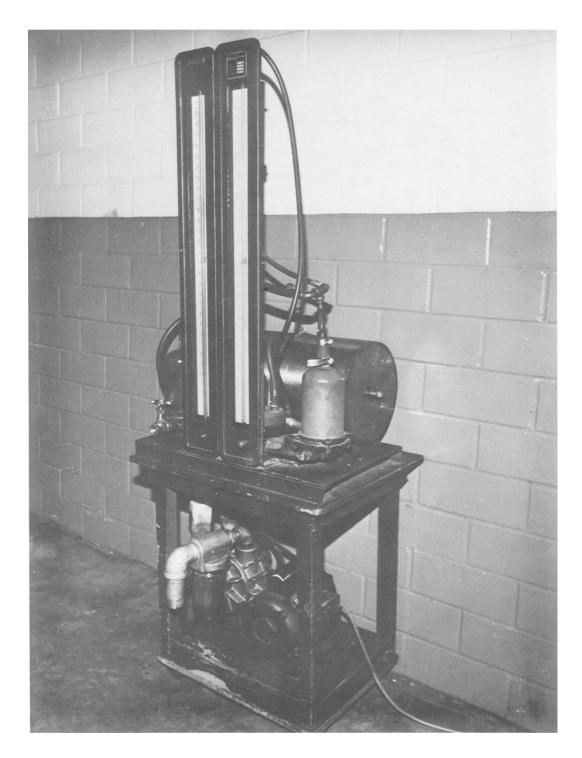


A3.37 OIL PUMP CALIBRATION APPARATUS

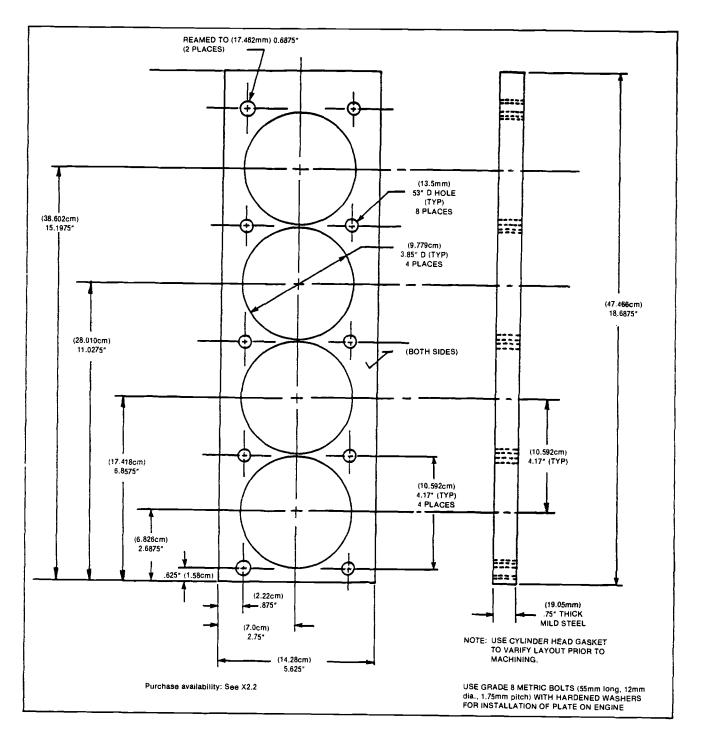
A3.38 REQUIRED CAM LOBE FLOW RATING APPARATUS



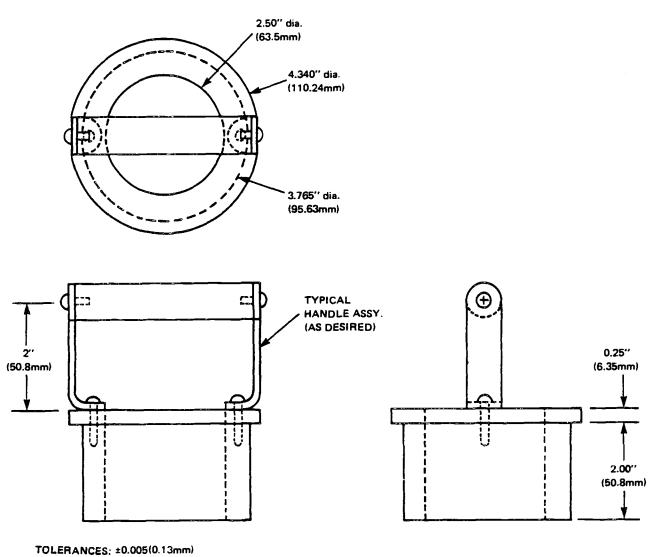
An assembled apparatus is available for purchase: See X2.2



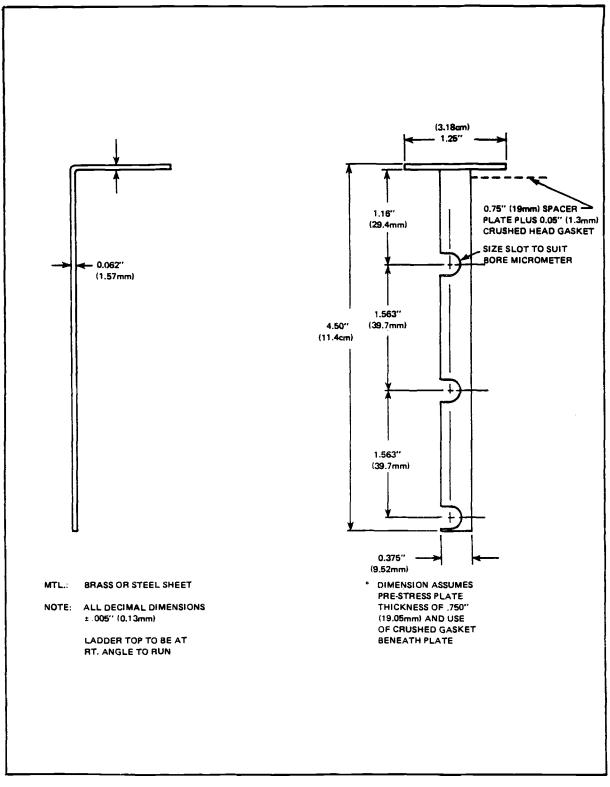
A3.39 TYPICAL CAM LOBE FLOW RATING APPARATUS


A3.40 PCV VALVE FLOW TEST STAND

STP315H-3 V-D



A3.41 TYPICAL PCV VALVE FLOW APPARATUS


A3.42 CYLINDER BLOCK PRE-STRESS PLATE

A3.43 PISTON RING POSITIONER

MATERIAL: ALUMINUM

A3.44
POSITIONING LADDER FOR BORE MICROMETER

Description of Part	Engineering No.	Service No.	Motorcraft No.
Complete 2.3 1 test engine	BX-152-01		
Complete Test Parts Kit Short block	Z-50-11	D8FZ6009A	
Engine block (bare)		DOFZCOLOD	
Cylinder head (completely assembled)	D9EE6049JC	D9FZ6010B D9FZ6049B	
Cylinder head (bare)	2/2200/00	D9FZ6049A	
Camshaft	D42E6251AA	D7FZ6250A	
Cam Follower		D8FZ6564A	
Intake Valve, std		D9ZZ6507A	
.015 in. o.s.		D6FZ6507C	
Exhaust Valve, std .015 in. o.s.		D6FZ6505A	
Valve Spring		D6FZ6505C	
Valve Seal		D4FZ6571A	
Hydraulic Lash Adjuster		D6FZ6500A	
Timing Belt	D9EE6268A5A	D4FZ6268A	
Piston	(PC-1946)	D4FZ6108A(STD)	
Piston Ring Set	D9JL6148B	D4FZ148A(Z)	
Connecting Rod		D7FZ6200A	
Connecting Rod Bearing	D42E6211AA	D9ZZ6211A	
Main Bearing	D42E6333AB	D9ZZ6333A	
Main Bearing, Upper Thrust	D42E6337AB	D9ZZ6337A	
Main Bearing, Lower Thrust	D42E6A339AB	D9ZZ6337G	
Front Seal Housing		D4FZ6700A	
Oil Pump	D8EE6600AA	D5FZ6600A	
Oil Pickup Tube (screen)		D5FZ6622C	
Oil Pump, w/Tube	D8EE6600AA		
Oil Pump Relief Valve Plunger			
Oil Pump Relief Valve Spring	D42E6670AC		
Oil Pump Relief Valve Plug		C20Z6A616A	
Dipstick Tube Oil Pan		D7FZ6754A	
On Pan	D8BE6675CC	D8BZ.6675A	
Rocker Arm Cover		D9FZ6582A	
Rocker Arm Cover Extension Pipe	C5AZ6A868B		
Dipstick	D60E6750AA	D60Z6750A	
Cylinder Block Freeze Plugs		D7AZ6026A	
Thermostat Housing		D8FZ8592A	
Intake Manifold		D9FZ9425A	
Water Pump		D8FZ8501A	PW158
Water Pump Pulley	D42E8509AB	D4FZ8509A or B	
Crankshaft Pulley	D42E6312CD	D4FZ6A313A	
Carburetor Spacer Plate	_	D7FZ9A589A	CM2404
PCV Valve	DSDE6A666BA	D8TZ6A666A	EV-77B
Crankcase Vent Hose	D2TE6A664BA	D1TZ6A664A	
EGR Valve	D52E9D475H2B	D5FZ9D475N	CX6
EGR Tube	D42E9D477CA	D4FZ9D477A	
EGR Elbow Fitting		N855-076-551	
Carburetor 1980 California	E9ZE9510SB		CA2353
Distributor	D7EE12127DA	D7FZ12127D	DA1543
Distributor Rotor		D7FZ12200C	DR308
Distributor Cap		D7FZ12106A	DH368

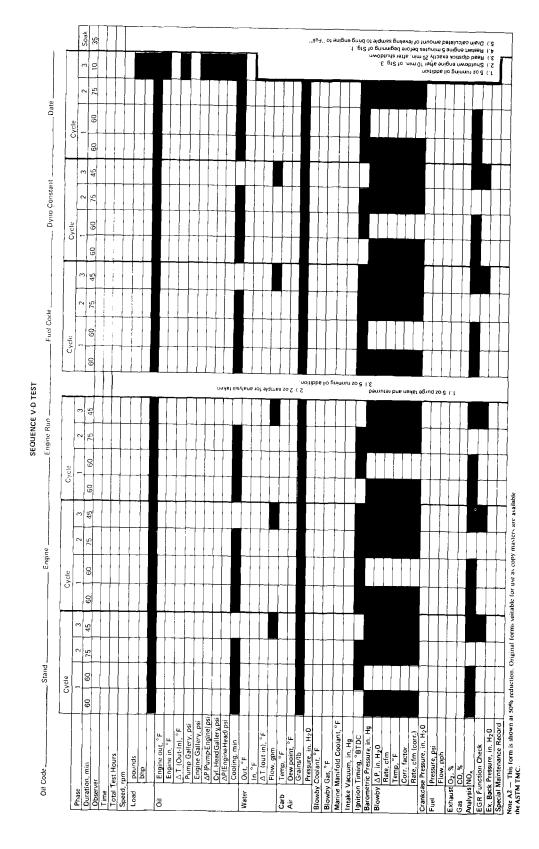
A4. Ford 2.3 L Engine Part Number Listing

STP315H-3 V-D

Description of Part	Engineering No.	Service No.	Motorcraft No.
Ignition Coil		D5AZ12029A	DG314
Secondary Ignition Wire Set	_	D8PZ12259A	WR3936
Electronic Ignition Module	D8VE12A199AC	D9VZ12A199A	DY184C
Primary Wiring Harness	D7JL12A200A		
Spark Plug			AWRF-42
Starter		D8FZ11002B	SA729
Flywheel		D4FZ6375A	
Oil Filter		D4ZZ6731B	FL-300
Tool Kit		T74P 6000-LB	
Gaskets			
Rocker Cover	D9ZE6584AA	D5FZ6584A	
Oil Pan			
Left Rail	D4E6710AA		
Right Rail	D42E6711AA		
Front end	D42E6722AB	D4FZ6781A	
Rear end	D9EE6723A2A		
Intake Manifold	D42E9439AA	D4FZ9441A	
Exhaust Manifold	D9EE9448BA	D9FZ9448B	
EGR Valve	D43E9D476AA	D4FZ9D476A	
Carburetor Spacer Plate			
to Intake Manifold	D42E9C477AB	D4FZ9C477A	
Carburetor Spacer (fiber)	D42E9447AB	D4F29447A	CG403
Intake Manifold Cap	not to be used	D8FZ9E436A	
Thermostat Housing	D42E8255AA	D4FZ8255A	
Water Pump	D42E8507AB	D4FZ8507A	
Fuel Pump	D42E9417AA	C3AZ9417C	
Front Cover	D42E6020AB	D4FZ6020A	
Crankshaft Front Seal	D42E6700A1A	D4FZ6700A	
Crankshaft Rear Seal	D42E6701AA	D4FZ6701A	
Auxiliary Shaft Seal	D42E6700A1A	D4FZ6700A	
Oil Pump Tube	D42E6625CB	D4FZ6626A	
Cylinder Head	D52E6051BA	D5FZ6051A	
Overhaul Set		D6FZ6079A and D6PZ6E078/	\
Valve Grind Set		D6FZ6079A	-

STP315H-3 V-D

A5. Operational Data Log Sheets-


- A5.1 Oil Sampling, Addition, and Leveling Data Record
- A5.2 Routine Engine Operation Data Log and Special Maintenance Data Log

														Client	Client Oil Code	a		
														Lab. O	Lab. Oil Code_			I
	1	د ر	6	6	12 48	15 60	18 72	21 84	24 96	27 108	30 120	33 132	36 144	39 156	42 168	45 180	48 192	
spé	Test Hours - Specific Action Time, Hours - 11	:25	1.01	liot	0.01	101	101		luo I	107:25	119:25	131:25	143:25	155:25	167:25	lint	191:25	
Ŀ.	Take purge sample, oz.	ĥ		ъ		ß		ß		ŝ	<u> </u>	Ŋ		ß		Ω	5	
2.	Replace purge sample	×		×		×		×		×		×	}	×	}	×	×	
÷	Take Sample for analysis, oz.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	►	2	>	2	►	2	►	2	>	5	•	2		2	7	
4.	Add new oil, oz.	ъ.	ŝ	<u>ہ</u>	S	- n	2	<u>۔</u> د	2	_ ت	Ω	<u>ب</u> در	ŝ	<u>ں</u> –	ß	<u>د</u>	7	
5.	Shut engine down.		×		×		×		×		×		×		×	<u> </u>	×	
.9	Check oil level after 20 minutes.		×		×		×		×		×		×		×		×	
7.	Record dipstick oil level, oz. ("O" for full, "H" for high, "L" for low; record no. of oz. high, or low).																-	
8.	Restart engine 5 min. before official beginning of Stg. I.		×		×		×		×	, <u>, .</u>	×		×		×			
б	If level is high in step 7 record amount of leveling sample drained to bring engine to full. If none drained enter 0.																	
10.	Final Oil Level Enter "O" for full or enter number of ounces low (L).							-				>				► [► [
11.	Operator's Initials.		\square															
	 Notes: • Limit of maximum allowable consumption is based on the final oil level (line 10 of the data log). Rates of consumption which lower the final oil level to more than 8 oz. low are excessive and the test is invalidated. For the final test report calculate the daily oil consumption via the following formula which accounts for the 2 oz. sample taken and variations in the "final oil level". Consumption for a given 24 hr. period (oz.) equals 8 minus the "final oil level" of the previous period minus the amount drained in step 9 for the current period plus the current "final oil level." 	wable cc id the tes rt calcula en 24 hr. vel.''	nsumplet is invational to a second se	tion is b lidated. daily oil (oz.) equ	ased on 1 consum Lats 8 mi	he final option via nus the "	oil level () the follo final oil	line 10 of owing for level'' of	the data mula wh the previo	log). Rate ch accou	s of consu ats for the I minus the	mption wi 2 oz. san : amount (nich lower nple taken frained in	the final c and varia step 9 for 1	il level to m tions in the he current J	iore than 8 : ''final oil period plus		

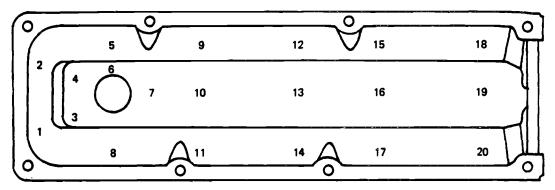
Test No.

ROUTINE ENGINE OPERATION DATA LOG AND SPECIAL MAINTENANCE DATA LOG **A**5.2

m		Test		-	· · · · · ·	IFSH	UTDOWN		
».	Stg.	Hrs.	Time	Complete Description of the Problem an	nd Actions Taken	Authorized By	Shutdown Time	Restart Time	Observ
]
						ļ		[]
									1
						ļ		ļ	
									1
]
									1
									1
						<u> </u>			4
						<u> </u>			1
]
						<u> </u>		<u> </u>	1
									1
						<u> </u>		<u> </u>	4
								<u> </u>	1
									{
									1
									ł
					Stand Maintenance Parts Replacements	<u>├</u>			1
				LA .	Instrument Calibration Adjustments				1
				Ten	t Operation Out of Limits				1

SPECIAL MAINTENANCE RECORD - TROUBLE RECORD - UNSCHEDULED SHUTDOWN RECORD

A6. Rating Worksheets --


- A6.1 Sludge Rating of Rocker Arm Cover
- A6.2 Sludge Rating of Front Seal Housing
- A6.3 Sludge Rating of Oil Pan
- A6.4 Sludge Rating of Valve Deck
- A6.5 Sludge Rating of Underside of Block
- A6.6 Varnish Rating of Piston Skirts and Rating for Ring Sticking
- A6.7 Varnish Rating of Rocker Arm Cover
- A6.8 Varnish Rating of Cam Cover Baffle
- A6.9 Varnish Rating of Cylinder Walls (BRT)
- A6.10 Varnish Rating of Oil Pan
- A6.11 Miscellaneous Ratings
- A6.12 Intake Valve Deposit Rating

Note A3 — The individual sheets listed above and shown sequentially on the immediately following pages are utilized according to instructions given in Section 13.

A6.1 SLUDGE RATING OF ROCKER ARM COVER

RATING WORK SHEET NO. 1

SLUDGE RATING OF ROCKER ARM COVER

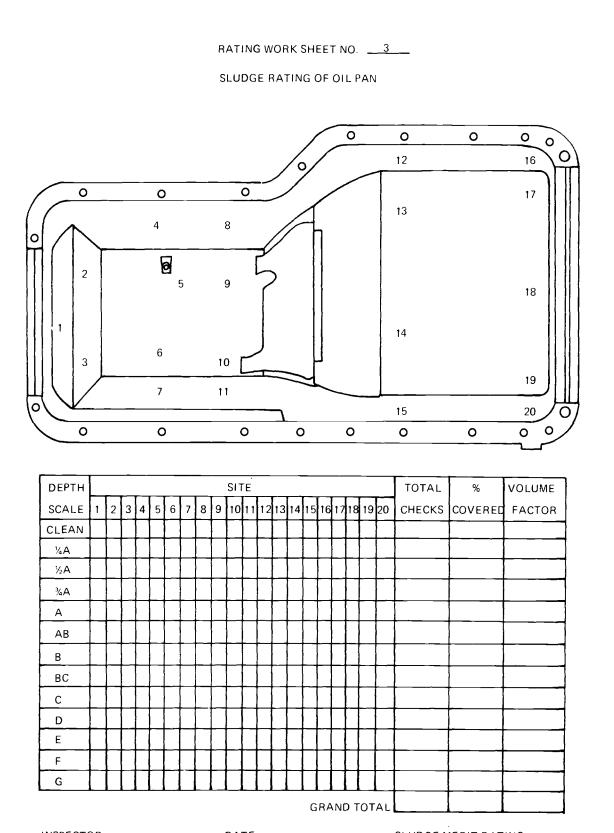
NOTE: SITES ON VERTICAL SURFACES AT MID-POINT

DEPTH										SI	TE										TOTAL	%	VOLUME
SCALE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	CHECKS	COVERED	FACTOR
CLEAN																							
%A																							
½A																							
%А																							_
Α																							
AB																							
В																							
BC																							
С																							
D																							
E																							
F																							
G																							
н																							
1																							
															G	RAP	nd 1	ют	AL				

INSPECTOR ______ DATE ______ SLUDGE MERIT RATING ______

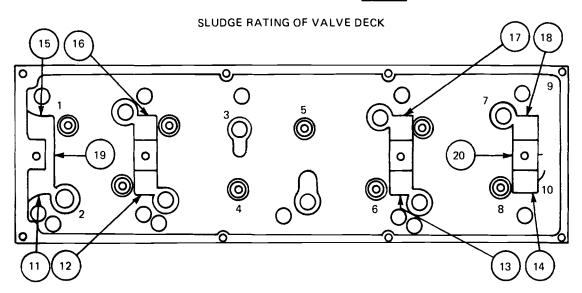
A6.2 SLUDGE RATING OF FRONT SEAL HOUSING

RATING WORK SHEET NO. 2


SLUDGE RATING OF FRONT SEAL HOUSING

DEPTH					SI	TE					TOTAL	%	VOLUME
SCALE	1	2	3	4.	5	6	7	8	9	10	CHECKS	COVERED	FACTOR
CLEAN													
%A													
%A													
% A													
A													
AB													
В													
BC													
С													
D				Ι_									
E													
F													
G												L	
						GR	AN	ר ס	от	AL	L		

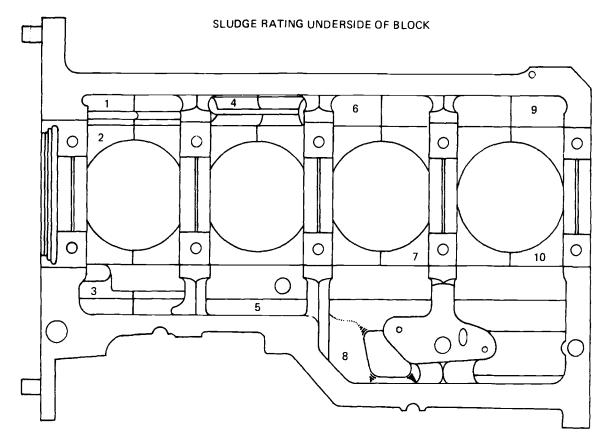
INSPECTOR_____ DATE____ SLUDGE MERIT RATING_____


A6.3 SLUDGE RATING OF OIL PAN

INSPECTOR _____ DATE _____ SLUDGE MERIT RATING _____

A6.4 SLUDGE RATING OF VALVE DECK

RATING WORK SHEET NO. ____4


NOTE: THE RATINGS OF POINTS 11, 12, 13, 14, 15, 16, 17 AND 18 ARE TAKEN AS SHOWN WITH THE EDGE OF THE SLUDGE GAGE RESTING ON THE GASKET MOUNTING SURFACE OF THE HEAD.

THE RATINGS OF POINTS 19 AND 20 ARE TAKEN AS SHOWN AT THE MIDPOINT OF THE MA-CHINED SURFACE, BELOW THE CAM BEARING.

DEPTH										SI	TE										TOTAL	%	VOLUME
SCALE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	снескѕ	COVERED	FACTOR
CLEAN																							
%A																							
½A																							
A																							
AB																							
В																							
BC																							
с																					_		
D																							
E						Í																	
F																							
G																							
															GF		١D	то	TAI	_			
INSPECTOR DATE SLUDGE MER										IT RATING													

A6.5 SLUDGE RATING OF UNDERSIDE OF BLOCK

RATING WORK SHEET NO. ____5___

DEPTH		_			SIT	E					TOTAL	%	VOLUME
SCALE	1	2	3	4	5	6	7	8	9	10	CHECKS	COVERED	FACTOR
CLEAN													
%A													
½A													
¾A													
A													
AB													
В													
BC													
С													
D											 		
E													
F													
G													
					C	GR/	N) т(DT A				

INSPECTOR ______ DATE _____ AVG. MERIT RATING _____

A6.6 VARNISH RATING OF PISTON SKIRTS AND RATING FOR RING STICKING

KATING WORK	SHEET NO
	G OF PISTON SKIRTS G STICKING
Ĺ	
	S

RATING WORK SHEET NO. ____6___

VARNISH

PISTON NO.	THRUST	ANTI- THRUST	AVERAGE
1			
2			
3			
4			
TOTAL			
AVERAGE			

STICKING

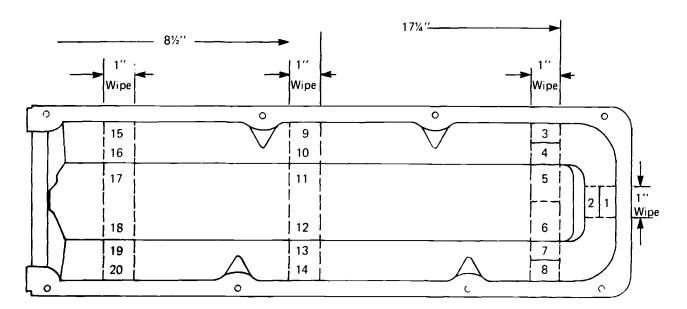
PISTONTOP2NDOIL1///////////////////////////////				
3 4	PISTON	тор	2ND	OIL
3 4	1			
4	2			
4 TOTAL	3			
TOTAL	4			
	TOTAL			

O = FREE

- S = STUCK
- T = TIGHT
- NOTE: TIGHT RATINGS NOT TO BE USED FOR OIL RINGS.

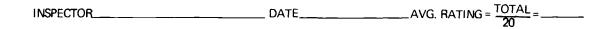
AVG. VARNISH RATING _____

NO. OF STUCK COMP. RINGS _____


INSPECTOR: _____

DATE: _____

A6.7 VARNISH RATING OF ROCKER ARM COVER


RATING WORK SHEET NO. ____7

VARNISH RATING OF ROCKER ARM COVER

	AREA	RATING
	1	
	2	
ĺ	3	
	4	
	5	
	6	
	7	
ļ	8	
	9	
	10	

AREA	RATING
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
TOTAL	

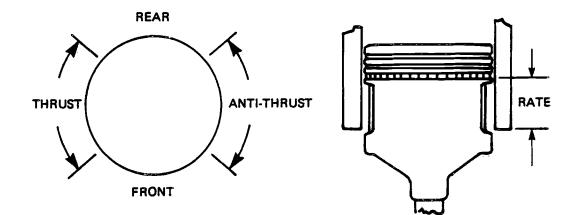
A6.8 VARNISH RATING OF CAM COVER BAFFLE

RATING WORKSHEET NO. ____8

VARNISH RATING OF CAM COVER BAFFLE

	1	6	11	
	2	7	12	
0	з О	8	13	0
	4	9	14	
	5	10	15	

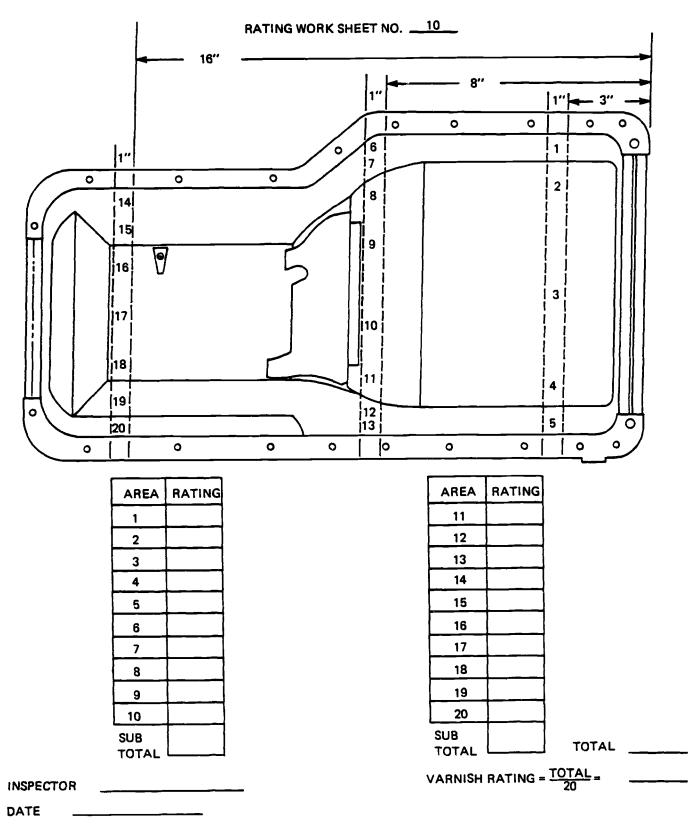
	
AREA	RATING
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	L
TOTAL	


INSPECTOR ______ VARNISH RATING = TOTAL = _____

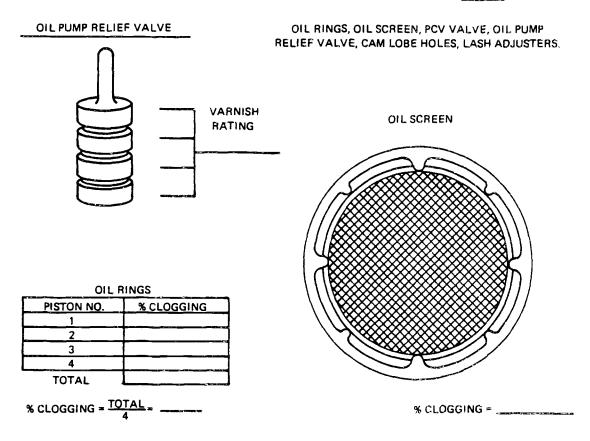
DATE ______

A6.9 VARNISH RATING OF CYLINDER WALLS (BRT)

RATING WORK SHEET NO. 9


VARNISH RATING OF CYLINDER WALLS

CYLINDER		AREA			
NO.	THRUST	ANTI-THRUST	FRONT	REAR	AVERAGE
1					
2					
3					
4					
				TOTAL	


DATE	VARNISH RATING = $\frac{\text{TOTAL}}{4}$

A6.10 VARNISH RATING OF OIL PAN

A6.11 MISCELLANEOUS RATINGS

RATING WORK SHEET NO. 11

LOBE #	1E	11	2E	21	3E	31	4E	41
BASELINE FLOW								
FINAL FLOW		T	[Γ	T		T	
Δ FLOW								
% REDUCTION*				1	1	<u> </u>	1	
CLOGGED (V)		1	1	†	1		<u> </u>	

BASELINE FLOW				
FINAL FLOW				
A FLOW				_
% REDUCTION*				
CLOGGED (V)				

	U	ASH	ADJU	STEP	S				
ADJUSTER	1E	11	2E	21	3E	31	4E	41	TOTAL
STUCK BODIES									
CLOGGED									

	P	CV VAL	VE		
ΔΡ	FLOW	RATE	Δ	%	•
IN HG	INITIAL	FINAL	RATE	CLOG	GING
18					
8					
•(X 100	≕%		
INS	PECTOR: _		_		_

DATE: _____

A6.12 INTAKE VALVE DEPOSIT RATING

RATING WORK SHEET NO. 12

INTAKE VALVE DEPOSITS

VALVE	RATING
1	
2	
3	
4	
TOTAL	

AVG. RATING = $\frac{\text{TOTAL}}{4}$ = _____

INSPECTOR _____

DATE _____

STP315H-3 V-D

A7. Final Report Forms ---

- A7.1 Final Test Report Sheet
- A7.2 Reference Oil Test Report Sheet
- A7.3 Piston Skirt Varnish Ratings
- A7.4 Test Operational Summary
- A7.5 Supplemental Operational Data
- A7.6 Special Maintenance Record
- A7.7 Oil Consumption Record
- A7.8 Blowby Data Plot
- A7.9 Oil Analysis Data
- A7.10 --- Wear Measurement Record
- A7.11 Rocker Arm Cover and Cam Baffle Photographs
- A7.12 Oil Pan and Oil Screen Photographs
- A7.13 Front Seal Housing and Intake Valve Photographs
- A7.14 Piston Skirt Photographs
- A7.15 Cam Lobe Photographs
- A7.16 Follower Arm Photograph

Note A4 — The individual sheets and photograph views listed above are shown sequentially on the immediately following pages and are utilized according to instructions given in Section 14.

A7.1 FINAL TEST REPORT SHEET

|--|

CLIENT OIL (CODE LAB	OIL CODE	SAE GRADE
STAND NO.	STAND RUN NO.	ENGINE NO.	ENGINE RUN NO.
FUEL BATCH	DATE STARTED	DATE COMPLETED	D TEST HOURS
CALIBRATION TES	ST NO. CALIBR	ATION OIL CODE	DATE CALIBRATED

SLUDGE DEPOSITS

Rocker Arm Cover	
Front Seal Housing	
Oil Pan	
Valve Deck Area	
Underside of Block	
Avg. Sludge	

CLOGGING

Oil Ring, %	
Oil Screen, %	
PCV Valve at 18", %	
PCV Valve at 8", %	
Camshaft Lobe Holes, No.	

VARNISH DEPOSITS

Piston Skirts	
Rocker Arm Cover	
Cam Cover Baffle	
Cylinder Wall (BRT)	
Oil Pan	
Avg. Varnish	

WEAR	
Top Ring Gap Inc. Max. Mils.	
Top Ring Gap Inc. Avg. Mils.	
Rod Brg. Wt. Loss. Max. Mg.	
Rod Brg. Wt. Loss. Avg. Mg.	
Cam Follower Wt. Loss Max. Mg	
Cam Follower Wt. Loss Avg. Mg	
Cam Lobe Wear Max. Mils.	
Cam Lobe Wear Avg. Mils.	

ADDITIONAL INFORMATION

	DDIII
Stuck Comp. Rings, no.	
Stuck Oil Rings, no.	
Stuck Lash Adj Bodies, no.	
Stuck Lash Adj Plungers, no.	

OPRV Varnish, Body	
Intake Valve Deposits, Avg.	
Blowby, cfm, Avg.	
Oil Consumption, qts.	

This test of the oil indicated above was conducted according to the provisions of the Sequence V-D Test procedure and all currently applicable Information Letters. The detail remarks provided in this report describes the deviations and any unusual features associated with this test. In my opinion this was a valid test.

Date

Testing Laboratory

A7.2 REFERENCE OIL TEST REPORT SHEET

REFERENCE OIL TEST REPORT - SEQUENCE V-D TEST

BLIND OIL	CODE INDU	STRY OIL CODE	LAB OIL CODE
STAND NO.	STAND RUN NO.	ENGINE NO.	ENGINE RUN NO.
FUEL BATCH	DATE STARTED	DATE COMPLETED	TEST HOURS

SLUDGE DEPOSITS

Rocker Arm Cover	
Front Seal Housing	
Oil Pan	
Valve Deck Area	
Underside of Block	
Avg. Sludge	

CLOGGING

Stuck Comp. Rings, no. Stuck Oil Rings, no.

Stuck Lash Adj. Bodies, no. Stuck Lash Adj. Plungers,no.

Oil Ring, %	
Oil Screen, %	
PCV Valve at 18", %	
PCV Valve at 8", %	
Camshaft Lobe Holes, no.	

VARNISH DEPOSITS

Piston Skirts	
Rocker Arm Cover	
Cam Cover Baffle	
Cylinder Wall (BRT)	
Oil Pan	
Avg. Varnish	

WEAR

Top Ring Gap Inc. Max. Mils.
Top Ring Gap Inc. Avg. Mils.
Rod Brg. Wt. Loss. Max. Mg.
Rod Brg. Wt. Loss. Avg. Mg.
Cam Follower Wt. Loss Max.Mg
Cam Follower Wt. Loss Avg.Mg
Cam Lobe Wear Max. Mils.
Cam Lobe Wear Avg. Mils.

ADDITIONAL INFORMATION

OPRV Varnish, Body					
Intake Valve Deposits, Avg.					
Blowby, cfm, Avg.					
Oil Consumption, qts.					

Target/Refe	rence St	atistics	Test		
Oil: Date:		No:			
Target	<u></u>	AL ±	<u> </u>	Δ/s	Testing Laboratory
AS					
PV					
AV					Engineer
ACW					
MCW					

A7.3 PISTON SKIRT VARNISH RATINGS

SEQUENCE V-D

Client Oil Code _____ Lab Oil Code _____ Test No. _____

VARNISH RATING OF PISTON SKIRTS

PISTON NO.	THRUST	ANTI- THRUST	AVERAGE
1			
2			
3			
4			
TOTAL			
AVG.			

Varnish Rating= Average Thrust + Average Antithrust =

2

Testing Laboratory

A7.4 TEST OPERATIONAL SUMMARY

SEQUENCE	V-D	TEST	OPERATIONAL	SUMMARY

TEST	NUMBER			DAT	E COMP	LETED				
CLIEN	T OIL CODE			LAB	ORATOR	Y OIL	CODE			
	STAGE I				s	TAGE I	I	s	TAGE I	II
		MAX	MIN	AVG	MAX	MIN	AVG	МАХ	MIN	AVG
Speed	, rpm									
Load,	bhp									
Oil	Cooler into engine, °F									
	Engine ΔT (Out-In), °F									
Ì	Pump Gallery, psi									
:	Engine Gallery, psi									
	ΔP (Pump-Engine), psi									
	Cyl. Head Gallery, psi			[T				
	ΔP (Engine-Head), psi									
	Cooling, min		<i>\////</i>	$\overline{\mathbf{M}}$		X////	XIII		1	
Water	Jacket Outlet, °F									
	ΔT (Out-In), °F	1			1					
	Flow, gpm				1			V////	X////	XIII
	Blowby Heat Exch., °F			ĺ						
	Marine Manifold, °F			[Î				I	
Carb.	Temperature, °F	1								
Air	Humidity, grains/lb									
	Pressure, in. H2O									
Blowb	y Temperature, °F									
Blowb	y Rate, cfm		<u> </u>		V///	XIII	XIII	\overline{X}	XIII	XIII
Crank	case Pressure, in. H ₂ O									
Ignit	ion Timing, °BTDC				V///	XIII	XIII			
Intak	e Manifold Vacuum, in. Hg									
Fuel	Flow, lb/hr									
Exhau	st Back Press., in. H ₂ O			T			1			
Exhau	ist 0 ₂ , %	1		1			1			
Gas	CO, %		1							
Analysis NO _x , ppm			XIII	XIII				V///	XIII	XIII

A7.5 SUPPLEMENTAL OPERATIONAL DATA

SEQUENCE V-D

SUPPLEMENTAL OPERATIONAL DATA

Client Oil Code_____ Lab Code_____Test No._____

Item

Remarks or Deviation

A7.6 SPECIAL MAINTENANCE RECORD

SEQUENCE V-D TEST SPECIAL MAINTENANCE RECORD

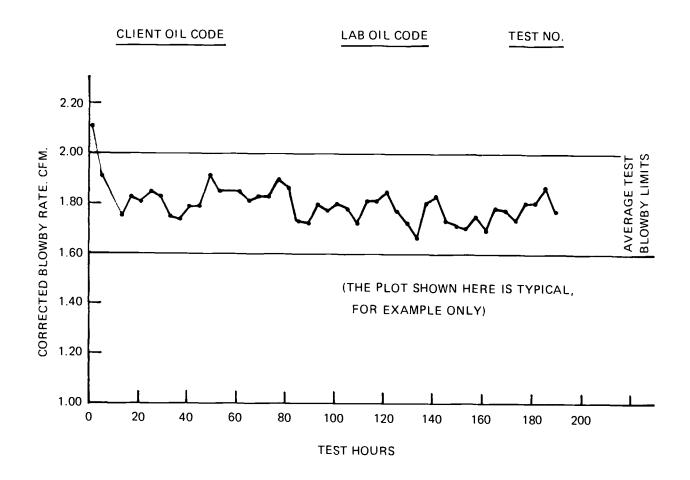
S Part Replacement	Stand Maintenance	S Unscheduled Shut-down	Test Hours	Stage	Down Time, hrs:min	Lost Time, min	Client or Reference Oil Code Lab Oil Code Test Number Problem statement/Action taken/Comments
<u> </u>							
	-		-				
			Ţ				

A7.7 OIL CONSUMPTION RECORD

SEQUENCE V-D

Oil Code_____Lab Oil Code____Test No._____

OIL CONSUMPTION RECORD


Quantity of oil drained after breakin ____Oz.

			-		0il	Measured
		Eng	ine		Consumption	Oil
Cycle		Hou			Oz.	Level
6	23	Hrs.	35	Min.		
12	47	- 11	35	11		
18	71	**	35	"		
24	95	17	35			
30	119	**	35	"		
36	143	n	35	н		
42	167	n	35			
48	191	"	35	11		

Total____

Oil Consumption (Quarts) = $\frac{\text{Total}}{32}$ =_____

A7.8 BLOWBY DATA PLOT

Note: The plotted data are taken at the designated time during each Stage I of the test as recorded on the operational data log sheets. Additional blowby measurements are excluded from the blowby plot and are also excluded from the provisions of 15.2.2.3. Additional blowby measurements must be reported as supplemental operational data (A7.5) with detailed explanation provided.

A7.9 OIL ANALYSIS DATA

OIL ANALYSIS - SEQUENCE V-D

Client Code: _____Lab Code: _____

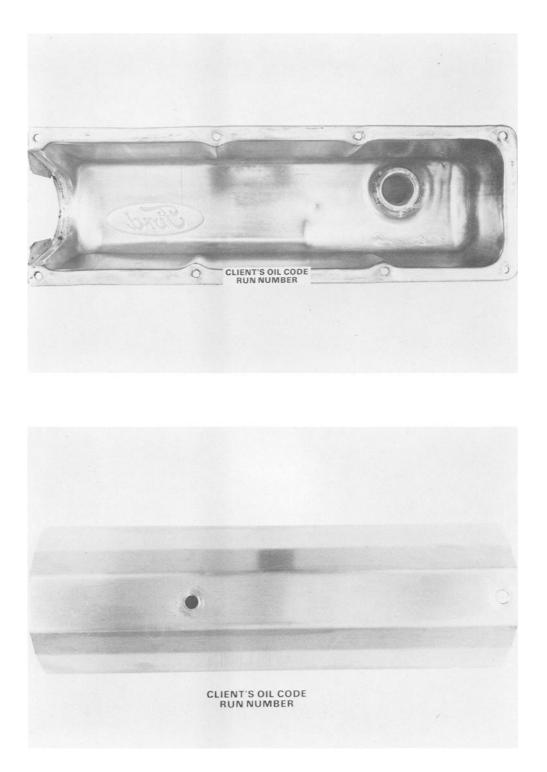
Test No: _____Completion Date: _____

Test Hrs.	Fe PPM	Cu PPM	Si PPM	Vis. 40°C	Fuel Dilution % Vol
				ASTM D445	ASTM D322
0*					
12					
36	_				
60					
84					
108					
132					
156					
180					
192					

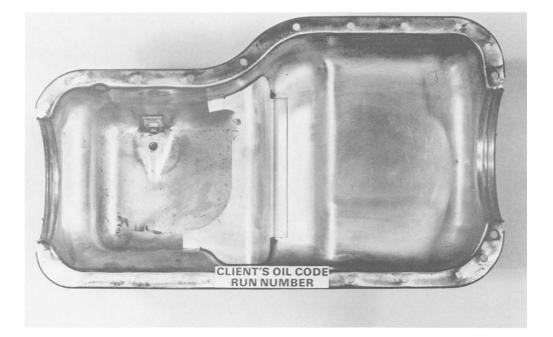
* New Oil

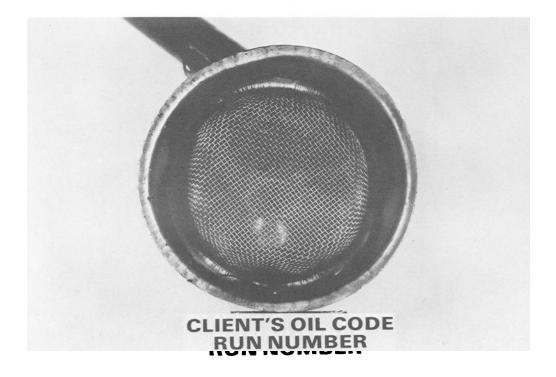
A7.10 WEAR MEASUREMENT RECORD

WEAR MEASUREMENTS - SEQUENCE V-D

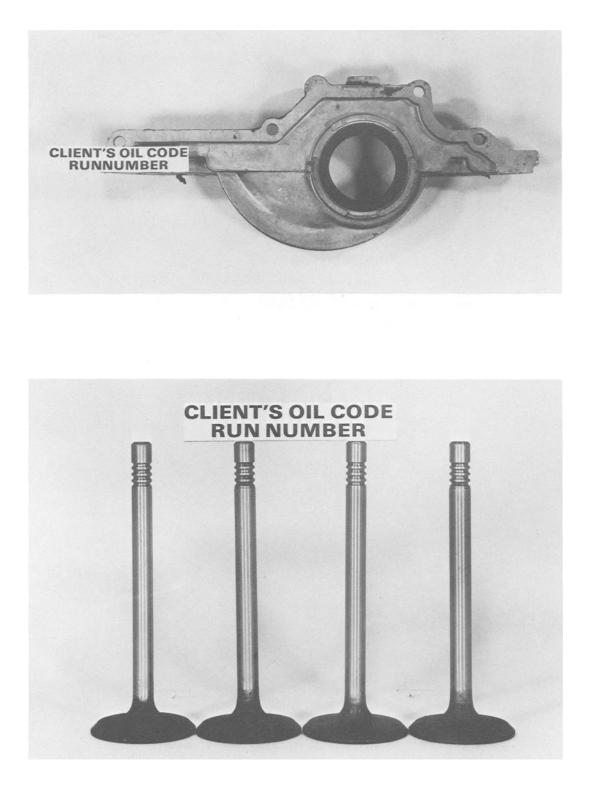

Client Code:_____ Lab Code:_____

Test No.:____ Completion Date:_____


Valve Train Inspection Detail


Posit:	ion No.	Cam Lobe Wear, in.	Lobe Orifice Plugging (% air flow loss)	Follower Weight Loss, Grams	Valve Spring _Load,_lb.
1	(1E)				
2	(11)				
3	(2E)				
4	(21)				
5	(3E)				
6	(3I)				
7	(4E)				
8	(41)				
Avi	g .				

A7.11 ROCKER ARM COVER AND CAM BAFFLE PHOTOGRAPHS



A7.12 OIL PAN AND OIL SCREEN PHOTOGRAPHS

A7.13 FRONT SEAL HOUSING AND INTAKE VALVE PHOTOGRAPHS

A7.14 PISTON SKIRT PHOTOGRAPHS

Note: Designations 2AT, 1WT, etc. exemplify the required labeling.

STP315H-3 V-D

A7.15 CAM LOBE PHOTOGRAPHS

Note: View is from thrust side of camshaft lobe

A7.16 FOLLOWER ARM PHOTOGRAPH

Note: Best and worst follower determination is based on the measured weight loss of the followers.

STP315H-3 V-D

A8. Safety Precautions

A8.1 General ---

A8.1.1 — The operating of engine tests can expose personnel and facilities to a number of safety hazards. It is recommended that only personnel who are thoroughly trained and experienced in engine testing should undertake the design, installation and operation of engine test stands.

A8.1.2 — Each laboratory conducting engine tests should have their test installation inspected and approved by their Safety Department. Personnel working on the engines should be provided with the proper tools, be alert to common sense safety practices, and avoid contact with moving and/or hot engine parts. Guards should be installed around all external moving or hot parts. When engines are operating at high speeds, heavy duty guards are required and personnel should be cautioned against working alongside the engine and coupling shaft. Barrier protection should be provided for personnel. All fuel lines, oil lines, and electrical wiring should be properly routed, guarded, and kept in good order. Scraped knuckles, minor burns and cuts are common if proper safety precautions are not taken. Safety masks or glasses should always be worn by personnel working on the engines and no loose or flowing clothing should be worn near running engines.

A8.1.3 — The external parts of the engine and the floor area around the engines should be kept clean and free of oil and fuel spills. In addition, the working areas should be free of all tripping hazards. In case of injury, no matter how slight, first aid attention should be applied at once and the incident reported. Personnel should be alert for leaking fuel or exhaust gas. Leaking fuel represents a fire hazard and exhaust gas fumes are noxious. Containers of oil or fuel cannot be permitted to accumulate in the testing area.

A8.1.4 — The test installation should be equipped with a fuel shut-off valve which is designed to automatically cut off the fuel supply to the engine when the engine is not running. A remote station for cutting off fuel from the test stand is recommended. Suitable interlocks should be provided so that the engine is automatically shut down when any of the following events occur: dynamometer loses field current, engine overspeeds, exhaust system fails, room ventilation fails or the fire protection system activates. Fixed fire protection equipment should be provided.

A8.1.5 — ASTM Sequence Tests use chemicals to clean engines between tests. Some of these chemicals require that personnel wear face masks, dust breathers, and gloves as exothermic reactions are possible. Emergency showers and face rinse facilities should be provided when handling such materials.

A8.2 Physical and Chemical Hazards List -

A8.2.1 Hazardous Chemicals and Materials -

- Gasoline
- Oil samples

- Stoddard Solvent
- Pentane
- Organic degreaser (S-26)
- Ethyl Acetate
- Cooling system cleanser (oxalic acid)

A8.2.2 Physical Hazards -

- Hot engine parts (EGR valve + tube, exhaust pipe)
- Rotating engine/test stand parts (belts, pulleys, shafts)
- Engine honing machine operation

A8.3 Hazard Statements -

A8.3.1 Gasoline - (unleaded)

Danger! Extremely Flammable. Vapors Harmful If Inhaled. Vapors May Cause Flash Fire.

Keep away from heat, sparks and open flames.

Keep containers closed; use positive shut off valves on fuel lines.

Use with adequate ventilation.

Avoid buildup of vapors and eliminate all sources of ignition, especially non-explosion proof electrical apparatus and heaters.

Avoid prolonged breathing of vapor.

Avoid prolonged or repeated skin contact.

- In case of spillage soak up with clay or diatomaceous earth, or similar materials.
- In case of fire use water spray, foam, dry chemical or CO_2 .

A8.3.2 Stoddard Solvent -

Caution! Combustible Vapor Harmful.

Keep away from heat, sparks, open flame.

Use with adequate ventilation.

Avoid breathing vapor or spray mist.

Avoid prolonged or repeated contact with skin.

In case of spillage soak up with clay, diatomaceous earth, or similar materials.

In case of fire use foam, dry chemical, or CO_2 .

A8.3.3 Oxalic Acid (Cooling System Cleanser) -

Caution! Toxic Substance. Avoid Contact With Eyes, Skin and Clothing.

Do not inhale dust.

Keep away from feed or food products.

In case of contact flush skin or eyes with water.

If swallowed, induce vomiting immediately by giving Ipecac Syrup.

A9. Glossary

A9.1 Blowby — That portion of the combustion reactants and unburned air-fuel mixture which leak into the engine crankcase during operation of the engine.

A9.2 Clogging — Restriction of a flow path due to the accumulation of debris along the flow path boundaries.

A9.3 Corrosion — Any observed chemical attack on the metal parts. Rust is a special case of the corrosion of iron.

A9.4 Lash Adjuster, stuck — One whose fulcrum does not return to its maximum upward travel position when the cam follower arm is removed from the fulcrum.

A9.5 Comp. Ring, free — One that falls of its own weight from side to side in its own groove.

A9.6 Comp. Ring, stuck — One that is either partially or completely bound in its groove.

A9.7 Comp. Ring, tight — One that offers resistance to movement in its groove, but which can be pressed into or out of the groove under finger pressure without springing back.

A9.8 Detonation — An abnormal combustion phenomenon that is characterized by an audible pinging or knocking sound resulting from shock waves propogated from the combustion area. A9.9 Oil Ring, stuck — One that cannot be manually rotated 360 degrees in the ring groove.

A9.10 Rumble — An abnormal combustion phemomenon that is characterized by an audible throbbing sound resulting from crankshaft vibration.

A9.11 Rust — The chemical combination of oxygen with ferrous engine parts, including other iron complexes not removable by organic solvents.

A9.12 Scoring — A condition resulting from metal to metal contact or foreign matter causing surface roughness in the direction of relative motion characterized by dragging and smearing of the material of one or both surfaces.

A9.13 Scuffing — Adhesive wear which is the result of progressive removal of material from a rubbing surface caused by localized welding and subsequent fracture.

A9.14 Sludge — A deposit, principally composed of engine oil and fuel debris, which does not drain from engine parts but can be removed by wiping with a soft cloth.

A9.15 Varnish — A hard, dry, generally lustrous oil insoluble deposit which cannot be removed by wiping with a soft cloth.

A9.16 Wear — The loss or relocation of material from two or more surfaces in relative motion.

X1. Suggested Engine Measurement Sheets -

- X1.1 Bore, Piston and Ring Measurement Data
- X1.2 Crankshaft, Bearing Clearance, and Miscellaneous Measurement Data
- X1.3 Camshaft Measurement Data
- X1.4 Hardness Measurement Data
- X1.5 Weight Measurement Data
- X1.6 Cylinder Head Measurement Data
- X1.7 PCV Valve Flow Measurement Data

Note X1 - The individual sheets listed above and shown sequentially on the immediately following pages may be utilized according to the requirements of Section 10.

X1.1 BORE, PISTON AND RING MEASUREMENT DATA

SEQUENCE V-D TEST

ENG. NO. ______ TEST: _____ DATE: _____

ENGINE MEASUREMENT RECORDS FORD 2.3 LITRE ENGINE

			CYLIN	DER BO	RE MEAS	SUREME	NTS					
Cylinder		1			2			3			4	
Location	Тор	Mid.	Bot.	Тор	Mid.	Bot.	Тор	Mid.	Bot.	Тор	Mid.	Bot.
Long. Dia.												Γ
Trans. Dia.												
Δ		I										
Max. 🛆												
Microfinish		t									–	t

Limit .0010 in. Max. △ Limit .0015 in. (.025 mm) (.038mm) <u>PISTON SELECTION</u>

025 mm)	(.0.30000)					
	Mid. & Bottom	Less 0.0014 - 0.0022 in.	Selected Piston			
Cyl.	Avg. Dia.	(.036 .056 mm) Clearance	Diameter	Taper		
1						
2						
3						
4						

Bores & Pistons Measured by _____ PISTON BING LAND DATA _____ Max. Limit .0015 in. (.038 mm)

	Second Ring Land Diameters								
Cyl. No.	Long.	Trans.	Out of Rd.						
1									
2									
3									
4									

COMPRESSION RING GAPS

Gaps Ground by _____

Cyl. No.	Top & Mid. Avg. Dia.	Avg. Ring Land Dia.	Land-Wall Clearance	Second Ring Gap	Gap Area	Top Ring Gap
1						
2						
3						
4						

REGAP HISTORY AND RING WEAR DATA

	Cyl. No.	Gap @ Hrs.	Opened To	Gap @ Hrs.	Opened To	Gap @ 192 Hrs.	Inc. Due To Wear
1	Top Second						
2	Top Second						
3	Top Second						
4	Top Second						

Rework by _____

X1.2 CRANKSHAFT, BEARING CLEARANCE, AND MISCELLANEOUS MEASUREMENT DATA

SEQUENCE V-D TEST ENGINE MEASUREMENTS RECORD FORD 2.3 LITRE ENGINE

Eng. No. _____ Test No. _____ Date _____

Ву _____

CRANKSHAFT MEASUREMENTS

	(60.9	mm)	Fitted Brg.	
	Std. Spe	Clearance		
	Main	Bearing Jou	urnals	
No.	Horiz.	Vert.	Out Rd.	
1				
2	-			
3				
4				
5				

Main and Rod Out Rd. Limit .0006 in. (.015 mm)

	Fitted Brg. Clearance				
	Std. Spec. 2.0464 - 2.0472 Connecting Rod Journals				
No.	Horiz.				
1					
2					
3					
4					

Plastigage Rod and Main Bearing Clearances Spec: 0.0008" - 0.0015"

OIL PUMP MEASUREMENTS

Pump No	
Oil Pump Rotor End Clearance	Specification .004 in. (.10 mm) Max.
Oil Pump Outer Race-Housing Clearance	.001 – .013 in. (.02 ~ .33 mm)
Oil Pump Output Pressure (Bench Test)	59 - 61 psi (406.7 - 420.5 kPa)
Ву	

CAMSHAFT END PLAY

0.001 - 0.007 in. (0.02 - 0.18 mm) Specification
--

CON ROD OIL ORIFICE

No.	(1.57 – 1.73 mm)
1	.062068
2	Specification
3	
4	

X1.3 CAMSHAFT MEASUREMENT DATA

SEQUENCE V-D TEST ENGINE MEASUREMENTS RECORD FORD 2.3 LITRE ENGINE

Eng. No. _____ Test No. _____ Date _____

CAMSHAFT NO. _____

Camshaft Lobe Orifice Diameters

Acceptance Specifications: 0.047 - 0.055 in. (1.19 - 1.40 mm)					
Position Dia.					
1	(1E)				
2	(11)				
3	(2E)				
4	(21)				
5	(3E)				
6	(31)				
7	(4E)				
8	(41)				

Camshaft Oil Delivery Groove

Depth: Max	-
Min	Specifications:
	0.035 - 0.051 in.
	(0.89 – 1.30 mm)
Calculated Avg	•
Width	Acceptance
-	Specifications:
	0.095 - 0.105 in.
	(2.41 - 2.67 mm)

Camshaft Journal Through Hole Diameter

Dia	Acceptance
	Specifications:
	0.116 - 0.124 in.
	(2.95 – 3.15 mm)

Measured by _____

Camshaft Lobe Measurements

	specifications: 290 in. (36.07 - 3	6.30 mm)
No. 1 Exhaust	Before After Difference	MIDDLE OF LOBE
No. 1 Intake	Before After Difference	
No. 2 Exhaust	Before After Difference	
No. 2 Intake	Before After Difference	
No. 3 Exhaust	Before After Difference	
No. 3 Intake	Before After Difference	
No. 4 Exhaust	Before After Difference	
No. 4 Intake	Before After Difference	
	Before Meas	surements by
	After Measu	rements by
	M	in. diff

X1.4 HARDNESS MEASUREMENT DATA

SEQUENCE V-D TEST ENGINE MEASUREMENTS RECORD FORD 2.3 LITRE ENGINE

Eng. No.	
Test No.	
Date	

Camshaft No	Follower Set	Follower Set No		
Position No.	Camshaft Lobes 180° from Max. Lift Point	Cam Followers Pad Surface Pivot End		
1 (1E)				
2 (11)				
3 (2E)				
4 (21)				
5 (3E)				
6 (31)				
7 (4E)				
8 (41)				
	Test Specification 50 min.	Test Specification 57 min		

HARDNESS-ROCKWELL "C"

Measured by _____

X1.5 WEIGHT MEASUREMENT DATA

SEQUENCE V-D TEST ENGINE MEASUREMENTS RECORD FORD 2.3 LITRE ENGINE

Eng. No. _____ Test No. _____ Date _____

ROD BEARING WEIGHTS

	<u>+-</u>	· · · · · · · · · · · · · · · · · · ·	•	ID
Rod. No.	Weight Before Test	Weight After Test	Loss	Total
1 Top 1 Bottom				
2 Top 2 Bottom				_
3 Top 3 Bottom				-
4 Top 4 Bottom				-
Before Measurement After Measurements	s by		g. loss	

CAM	FOLL	OWER	WEIG	HTS

ID _____

Before After Difference		2. 11		
Before After Difference	5. 3E	6. 31	7. 4E	8. 4I
Before Measurements by				
After Measurements by				

X1.6 CYLINDER HEAD MEASUREMENT DATA

SEQUENCE V-D TEST ENGINE MEASUREMENTS RECORD FORD 2.3 LITRE ENGINE

Eng. No. _____ Test No. _____ Date _____

VALVE SPRING MEASUREMENTS

				Head No
D 141	Spring	Spring	Spring	Assembled
Position	Free	Out-of	Force at	Spring
No.	Length	Square	1.16 in. (29.46 mm)	Height
1 (1E)				
2 (11)				
3 (2E)		1		
4 (21)				
5 (3E)				
6 (31)				
7 (4E)				
8 (41)				
Specifications	Approx.	Max:		
	1.82 in.	5764 in.	167 ± 8 lb.	1.56 ± 0.03 in.
	(48 mm)	(2 mm)	(75.7 ± 3.6 kg)	$(39.6 \pm 0.8 \text{mm})$

Measured by _____

VALVE STEM TO GUIDE CLEARANCE

Cylinder		Valve Guide Dia.	Valve Stem Dia.	Difference		
1	Exh.					
	Int.					
2	Exh.					
	Int.					
3	Exh.					
	Int.					
4	Exh.					
	Int.		-			
Exhai		ired must be. 1032 in. (0.048 - 0.081 mm) 27 in. (0.035 - 0.068 mm)		<u> </u>		

Measured by _____

STP315H-3 V-D

X1.7 PCV VALVE FLOW MEASUREMENT DATA

SEQUENCE V-D TEST ENGINE MEASUREMENTS RECORD FORD 2.3 LITRE ENGINE

Eng. No.	
Test No.	<u> </u>
Date	_

	EV-//B		'E FLO	W M	EASI	JREN	IENT						
Observer	Differ Pressur		0	2	4	6	8	10	12	14	16	18	
_	Before	ΔΡ	Ī										T
	Test	CFM											
	After	ΔΡ											
	Test	CFM											

EV-77B PCV VALVE FLOW MEASUREMENT

X2 Procurement of Materials

The itemized information presented here is not intended to represent an exclusive or complete listing of required materials. This information is presented for the sake of convenience only.

X2.1 Aeroquip Hose and Fittings — Aeroquip hose and fittings are specified for the external oil cooling system. Aeroquip products are available through local distributors or:

Aeroquip Corporation Van Wert, Ohio 45891

X2.2 Hardness Tester Fixtures and Other Special Test Hardware — Available from:

Concept Engineering Inc. P.O. Box 29625 San Antonio, Texas 78229 Attn: Mr. John W. Knight Telephone: (512) 349-4300

X2.3 Fuel — For procurement of fuel, communications may be referred to:

Phillips Petroeum Company 13-D3 Phillips Building Bartlesville, Oklahoma 74004 Attn: Mr. George Donovan Telephone: (918) 661-5423

For ordering fuel, purchase orders should be directed to:

Phillips Petroleum Company 367 Adams Building Bartlesville, Oklahoma 74004 Attn: Harry L. Colopy Telephone: (918) 661-4196

X2.4 Water-Cooled Exhaust Manifolds — The exhaust manifold utilized for test purposes is manufactured by:

Edelbrock, Inc. 4411 Coral Circle El Segundo, California 90245 Telephone: (213) 322-7310 X2.5 Engine Coolant Flowmeters — Barco flowmeters may be ordered under part number BR 12705-16-31. Barco master read-out units may be ordered from the same source. Orders should be directed to:

Aeroquip Corporation AMB Division/Industrial Products 300 Southeast Avenue Jackson, Michigan 49203

X2.6 Intake Air Humidity Instrumentation — An instrument such as the Alnor 7300 Dewpointer has been found satisfactory. Available from:

Illinois Testing Laboratory Inc. 420 North LaSalle Street Chicago, Illinois 60610

Instrumentation manufactured by EG&G and Foxboro has also been considered suitable.

X2.7 Blowby Meter — Information regarding the specified blowby meter may be obtained by contacting:

Research Laboratories General Motors Technical Center Fuels and Lubricants Department 21 Warren, Michigan 48090 Attn: R. H. Kabel Telephone: (313) 575-2827

X2.8 Heat Exchangers — Orders for American Standard and Ross heat exchangers may be placed with your area representative for these products. One such representative is:

Kinetics Engineering Corporation 2300 West Loop South, Suite 280 Houston, Texas 77027 Attn: Earl Harris Telephone: (713) 621-9711

X2.9 Fuel Flow Measurement — A model 10,-000 Flo-tron linear mass flowmeter may be utilized for monitoring fuel flow. Ordering information can be obtained from:

Flo-tron, Inc. 495 East 30th Street Paterson, New Jersey 07504 X2.10 Exhaust Gas Analysis Instrumentation — Exhaust gas analysis equipment which meets the procedural requirements may be obtained from the following manufacturers:

For carbon monoxide:

Beckman Model 865 (0-10%) Beckman Instruments, Inc. Fullerton, California 92634 Horiba Mexa 221 (0-10T), Horiba, Inc. 1021 Duryea, Irving Industrial Complex Irving, California 92714 Intertech Type CG-CO-T Model 5611-131 (0-10%) Intertech Corporation Princeton, New Jersey 08540

For oxygen:

Beckman Model 715 Process Oxygen Monitor Scott Oxygen ANALYZER Model 250 Scott Environmental Systems Division of ETC, Countyline Industrial Park South Hampton, Pennsylvania 08966

Teledyne 320 B/RC Teledyne Analytical Instruments, Inc. 333 West Mission Drive San Gabriel, California 91776 Telephone: (213) 283-7181

For oxides of nitrogen: Beckman Model 951

X2.11 Exhaust Gas Analysis Instrumentation Calibration — Information regarding calibration gases for exhaust gas analysis equipment may be obtained from:

Scott Environmental Technology, Inc. Route 611 Plumbsteadville, Pennsylvania 18949

X2.12 Magnehelic Pressure Gages — Available through:

Dwyer Instrument Co. P. O. Box 373 Michigan City, Indiana 46360 X2.13 Condensate Traps — Meriam Instrument's Model 932S trap has been found appropriate for use with engine test stands.

Meriam Instrument 10920 Madison Ave. Cleveland, Ohio 44102 Telephone: (216) 281-1100

X2.14 Engine Coolant — Ordering information for Nalcool 2000 Engine Cooling System Treatment may be obtained from:

Nalcol Chemical Company Industrial Division, Specialty Chemicals 180 North Michigan Avenue Chicago, Illinois 60601

The treatment is available in cases containing 12 1pint bottles and in 5-, 15-, and 55-gal non-returnable steel drums.

X2.15 Cooling System Flushing Agents — Flush and neutralizer may be obtained in bulk form from several sources, or "DuPont Heavy-Duty Cooling System Cleanser and Neutralizer" may be used. Contact suppliers of DuPont products for ordering information. Maintain specified ratios of cleanser/system capacity and neutralizer/system cleanser when using pre-packaged material.

X2.16 Protective Oils — Both Rubilene S-315 and Rubilene 1200 are available from local distributors for the Atlantic Richfield Company. EF-411 and Vacmul 3-D are available from local distributors of Mobil products.

X2.17 Piston Ring Grinder — Information regarding a suitable piston ring grinder may be obtained from:

Sanford Manufacturing Company P. O. Box 1124 Rahway, New Jersey 07065 Purchasers should specify the Ford 2.3 litre engine application for this equipment. X2.18 Hardness Tester — A suitable hardness tester may be ordered from:

King Tester Corp. 510 Feheley Drive King of Prussia, Pennsylvania 19406 Attn: Jas. Mullen Telephone: (215) 279-6010

X2.19 Pistons and Rings — Piston and pin sets must be ordered from:

Dana Corp., Perfect Circle P. O. Box 666 Pueblo, Colorado 81002 Attn: Sue Christie Telephone: (303) 948-3311

Rings must be ordered from:

Dana Corp., Perfect Circle P. O. Box 1166 Richmond, Indiana 47374 Attn: Ms. Cleo Teel/Joan Innis Telephone: (317) 966-8111

X2.20 Connecting Rod Heater — The Sunnen Model CRH-50 rod heater provides a convenient and effective means of installing piston pins with minimum heat exposure to the rods. Sunnen Inc. 7910 Manchester St. Louis, Mo. 63143 Telephone: (314) 781-2100

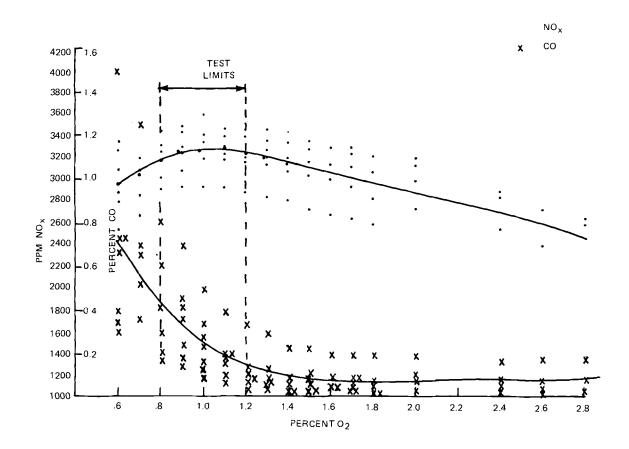
X2.21 Tygon Hose — Tygon hose of formulation No. B-44-3 is stable in the temperature range—40°F to 215°F (-40°C to -102°C). Tygon hose is available through Local Cadillac Plastic Co. distributors or:

The Norton Company 12 East Ave. Tallmadge, Ohio 44278 (1-800-321-9634)

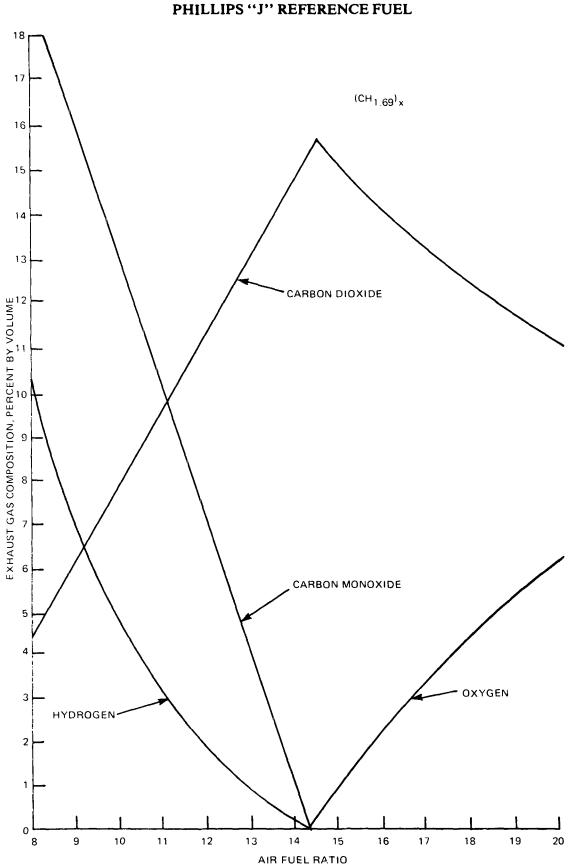
X2.22 Norgren Miniature Filter/Line Trap. Model F-04 — Available through:

Leo J. Schindler Co., Inc. Box 35363 Dallas, TX 75235

X2.23 Rating Lamps — Ratings lamps meeting specifications are available from:


Dazor Manufacturing Corporation 4455 Duncan Avenue St. Louis, Missouri 63110 STP315H-3 V-D

	Batch 7	Batch 8
X3.1 —		
Gravity API, 60°F (15.6°C)	53.3	52.6
Gravity, Specific, 60°F/60°F	0.7657	0.7686
Pounds per Gallon, 60°F	6.375	6.399
Color	Undyed	Undyed
Doctor Test	Negative	Negative
X3.2 —		
Copper Corrosion, 3 hrs. at 212°F (100°C)	1-A	1-A
Reid Vapor Pressure	8.0	8.5
Research Octane Number	95.9	96.6
Motor Octane Number	84.4	85.2
(R + M)/2	90.5	90.9
X3.3 —		
Total Sulfur, Wt. %	0.011	0.009
Gum, mg/100 ml	0.8	0.2
Oxidation Stability, Min.	1600 +	1600+
Lead, gms/gal	Less than 0.001	Less than 0.001
Phosphorous, gms/gal	Less than 0.001	Less than 0.001
Iron, ppm	Less than 0.1	Less than 0.1
X3.4 —		
Distillation, % Evap.,°F, (°C)		


X3. Typical Analysis of Phillips "J" Fuel

X3.4 —		
Distillation, % Evap.,°F, (°C)		
IBP	89 (31.7)	96 (35.6)
10%	120 (48.9)	128 (53.3)
50%	222 (105.6)	226 (107.8)
90%	320 (160.0)	320 (160 .0)
E.P.	414 (212.2)	417 (213.9)
Recovery, %	98.5	98.0
Residue, %	0.5	1.0
X3.5 —		
PONA, Vol. %		
Parafins + Naphthenes	42.8	42.0
Olefins	11.6	11.0
Aromatics	45.6	47.6

X4 SIGNIFICANCE OF EXHAUST GAS ANALYSIS X4.1 NO_X AND CO EXHAUST GAS CONCENTRATIONS—STAGES I AND II PHILLIPS "J" BATCHES 7 AND 8

144

X5. Description of Scott Quarterly Gas Audit Service

X5.1 — Four times a year (once every three months), Scott can prepare for each subscriber to the Carbon Monoxide (CO) Audit Service, one cylinder containing approximately 200 cubic feet of a CO in nitrogen mixture. Scott's exclusive Acublend TM process can be employed to guarantee that the CO concentration in each subscriber's cylinder is within ± 1 percent of the others. The CO concentration for each quarterly service and each cylinder will be known precisely by Scott.

X5.2 - Cylinders for all subscribers will be shipped simultaneously each quarter on a prescheduled date. The subscribers will only know that the cylinder contains a CO in nitrogen mixture in the concentration range of 0.1 percent to 0.4 percent by volume. Upon receipt of the cylinder it will be the subscriber's responsibility to analyze the cylinder using the instruments employed during the low temperature sludge and varnish tests and report the analytical results to Scott within one week following receipt of the cylinder. Report forms designed for this purpose will be provided with each cylinder. To obtain maximum benefit from the service, it is recommended that the cylinder be analyzed by introducing the gas through both the calibration port and sample inlet system of the analyzer. The report form will have provisions to report the two analyses independently.

X5.3 - Upon receipt of the analytical results, Scott will prepare and submit a formal report to each subscriber showing the test results of each laboratory. The report will also provide Scott's analysis of each cylinder, a chart showing the distribution of analysis received, and the results of a statistical analysis showing the average, median, range, standard deviation, and standard error of the results reported.

X5.4 - A decal and analysis tag showing Scott's analysis and the group average will be provided with each copy of the final report. These tags are provided for installation on each subscriber'scylinder so that they may be used as primary calibration standards until returned to Scott.

X5.5 — Each subscriber will be able to increase his analytical accuracy and isolate problem areas by comparing his test results with the average of the industry. In the majority of cases, it is anticipated that differences in analytical results obtained when introducing the gas at the sample inlet and calibration ports will be a consequence of operating procedures, leaks in the sampling system or losses resulting from improper design of the same. Differences between a specific laboratory and the industrial average will in general indicate deficiencies in the analyzer or the quality of the gas mixtures used to calibrate the same.

X5.6 - A similar service is available using oxygen instead of carbon monoxide. For further information, inquiries should be addressed to:

Scott Environmental Technology, Inc. Route 611 Plumsteadville, Pennsylvania 18949