

Fracture Mechanics: Nineteenth Symposium

Thomas A. Cruse, editor

FRACTURE MECHANICS: NINETEENTH SYMPOSIUM

Nineteenth National Symposium on Fracture Mechanics sponsored by ASTM Committee E-24 on Fracture Testing and Southwest Research Institute San Antonio, TX, 30 June–2 July 1986

ASTM SPECIAL TECHNICAL PUBLICATION 969 Thomas A. Cruse, Southwest Research Institute, editor

ASTM Publication Code Number (PCN) 04-969000-30

1916 Race Street, Philadelphia, PA 19103

Library of Congress Cataloging-in-Publication Data

National Symposium on Fracture Mechanics (19th: 1986: San Antonio, Tex.) Fracture mechanics, nineteenth symposium.

(ASTM special technical publication; 969)
"ASTM publication code number (PCN) 04-969000-30." Includes bibliographies and index.
1. Fracture mechanics—Congresses. I. Cruse, Thomas A.
II. ASTM Committee E-24 on Fracture Testing. III. Southwest Research Institute (San Antonio, Tex.). IV. Title. V. Series. TA409.N38 1986 620.1'126 88-3320 ISBN 0-8031-0972-5

Copyright © by AMERICAN SOCIETY FOR TESTING AND MATERIALS 1988 Library of Congress Catalog Card Number: 88-3320

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Foreword

The Nineteenth National Symposium on Fracture Mechanics was held on 30 June-2 July 1986 in San Antonio, TX. ASTM Committee E-24 on Fracture Testing and the Southwest Research Institute sponsored the event. The symposium chairman was Thomas A. Cruse, Southwest Research Institute, who also served as editor of this publication.

Related ASTM Publications

- Fracture Mechanics: Eighteenth Symposium, STP 945 (1987), 04-945000-30
- Fracture Mechanics: Seventeenth Volume, STP 905 (1986), 04-905000-30
- Fracture Mechanics: Sixteenth Symposium, STP 868 (1985), 04-868000-30

Fracture Mechanics: Fifteenth Symposium, STP 833 (1984), 04-833000-30

- Case Histories Involving Fatigue and Fracture, STP 918 (1986), 04-918000-30
- Elastic-Plastic Fracture Mechanics Technology, STP 896 (1986), 04-896000-30
- Automated Test Methods for Fracture and Fatigue Crack Growth, STP 877 (1985), 04-877000-30
- Elastic-Plastic Fracture Test Methods: The User's Experience, STP 856 (1985), 04-856000-30

A Note of Appreciation to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

ASTM Committee on Publications

ASTM Editorial Staff

Helen Mahy Janet R. Schroeder Kathleen A. Greene William T. Benzing

Contents

Introduction	1
Three-Dimensional Issues	
Measurement of Three-Dimensional Effects in Fracture Mechanics —C. WILLIAM SMITH	5
Three-Dimensional Elastic Surface Cracks—THOMAS A. CRUSE	19
Stress-Intensity Factors for Corner Cracks in Rectangular Bars I. S. RAJU AND J. C. NEWMAN, JR.	43
Some Remarks on Three-Dimensional Fracture— EFTHYMIOS S. FOLIAS	56
Three-Dimensional Effects Affecting the Precision of Lifetime Predictions—HORST KORDISCH AND ERWIN SOMMER	73
Three Dimensions Versus Two Dimensions in Fracture Mechanics—J. L. SWEDLOW	88
Computational and Analytical Issues	
Computation of the Amplitude of Stress Singular Terms for Cracks and Reentrant Corners —BARNA A. SZABÓ AND IVO BABUŠKA	101
Line Spring Model and Its Applications to Part-Through Crack Problems in Plates and Shells—FAZIL ERDOGAN AND BULENT AKSEL	125
Methodology for Mixed-Mode Stress-Intensity Factor Calculations—E. THOMAS MOYER	153
DAMAGE TOLERANCE AND FATIGUE	
Damage Tolerance of Stiffened-Skin Structures: Prediction and Experimental Verification—HENK VLIEGER	169

Mechanical Durability Assurance in Automotive Structures— RONALD W. LANDGRAF	220
Role of Damage Tolerance and Fatigue Crack Growth in the Power Generation Industry —LOUIS F. COFFIN	235
Structural Integrity of Rail in Railroad Track in the United States—OSCAR ORRINGER AND ROGER K. STEELE	260
ELASTOPLASTIC FRACTURE	
Three-Dimensional Crack-Tip Deformation in a Plastically Deformed Three-Point Bending Specimen—XIAO-PING WU AND FU-PEN CHIANG	281
On the Application of <i>R</i> -Curves and Maximum Load Toughness to Structures—TED L. ANDERSON, J. ROBIN GORDON, AND STEVEN J. GARWOOD	291
Application of the J Concept to Fatigue Crack Growth in Large- Scale Yielding —YVAN LAMBERT, PATRICK SAILLARD, AND CLAUDE BATHIAS	318
Fracture Toughness of Stainless Steel Welds—william J. Mills	330
Use of <i>R</i> -Curves for Design in the Elastic-Plastic Fracture Mechanics Regime—CEDRIC E. TURNER AND MOHAMMAD R. ETEMAD	356
Fatigue Behavior of Axial and Pressure Cycled Butt and Girth Welds Containing Defects—BRIAN N. LEIS, DOUGLAS P. GOETZ, PAUL M. SCOTT, AND C. MICHAEL HUDSON	374
Effect of Temperature and Strain Rate on Upper Shelf Fracture Behavior of A533B Class I Pressure Vessel Steel— OUN H. JUNG AND K. LINGA MURTY	392

DYNAMIC INELASTIC FRACTURE

Using Combined Experiments and Analysis to Generate Dynamic Critical Stress Intensity Data—DANIEL V. SWENSON AND ANTHONY R. INGRAFFEA

Analysis of Crack Arrest Under Elastic-Plastic Conditions—	
GEORGE T. HAHN, PEDRO C. BASTIAS, ARUN M. KUMAR,	
AND CAROL A. RUBIN	427
Ductile Crack Bifurcation and Arrest in Pressurized Pipe—	
ALBERT S. KOBAYASHI, A. F. EMERY, W. J. LOVE,	
YH. CHAO, AND O. JOHANSSON	441
Dynamic Measurement of Crack-Tip Opening Displacement—	
WILLIAM N. SHARPE, JR., ZENON WACLAWIW, AND	
ANDREW S. DOUGLAS	466
Dynamic Moiré Interferometry Studies of Stress Wave and Crack- Tip Diffraction Events in 1018 Steel—	
JONATHAN S. EPSTEIN, VANCE A. DEASON, AND	
WALTER G. REUTER	482
CRACK ARREST THEORY AND APPLICATIONS: PART I	
Determination of Dynamic Fracture Behavior in 4340 Steel Compact Crack Arrest Specimens Using Birefringent Coatings and Finite-Element Analysis—shamsuddin KHATRI AND DON B. BARKER	507
Approximate Methods for Analysis of Dynamic Crack Growth and Arrest—FRED NILSSON	524
Some Aspects of Performing Dynamic Measurements and Analyses on the Compact Crack Arrest Specimen for A533-B Steel—BJÖRN BRICKSTAD AND LARS DAHLBERG	532
A Cooperative Study for the Evaluation of Crack Arrest Toughness of RPV Materials in Japan—YUZURU SAKAI, GENKI YAGAWA, AND YOSHIO ANDO	547
A Method for Determining the Crack Arrest Fracture Toughness of Ferritic Materials—D. B. BARKER, R. CHONA, W. R. CORWIN, W. L. FOURNEY, G. R. IRWIN, C. W. MARSCHALL, A. R. ROSENFIELD, AND E. T. WESSEL	569
CRACK ARREST THEORY AND APPLICATIONS: PART I-ANALYSI	IS
Experimental Evaluation of an Equation Applicable for Surface	
Cracks Under Tensile or Bending Loads— WALTER G. RELITER AND JONATHAN'S EDSTEIN	597
WALTER G. REUTER AND JONATHAN S. EPSTEIN	571

A Three-Dimensional Weight Function Method—	
LESLIE BANKS-SILLS	620
Constraint-Loss Model for the Growth of Surface Fatigue	
Cracks-R. H. VAN STONE, M. S. GILBERT, O. C. GOODEN,	
AND J. H. LAFLEN	637
Line Spring Method of Stress-Intensity Factor Determination for	
Surface Cracks in Plates Under Arbitrary In-Plane	
Stresses—Chuang-yeh yang	657
Mixed-Mode Stress-Intensity Factor Solutions for Offshore	
Structural Tubular Joints—H. CHONG RHEE AND	
MAMDOUH M. SALAMA	669
CRACK ARREST THEORY AND APPLICATIONS: PART II	
Wide-Plate Crack-Arrest Testing: Evolution of Experimental	
Procedures-ROLAND DEWIT, SAMUEL R. LOW III, AND	
RICHARD J. FIELDS	679
Fracture Analyses of Heavy-Section Steel Technology Wide-Plate	
Crack-Arrest Experiments—B. RICHARD BASS,	
CLAUD E. PUGH, JOHN G. MERKLE, DAN J. NAUS, AND	(01
JANIS KEENEY-WALKER	691
Comparison of Analysis and Experimental Data for a Unique	
Crack Arrest Specimen—DAVID J. AYRES,	
RAYMOND J. FABI, ROBERT Y. SCHONENBERG, AND	774
DOUGLAS M. NORRIS	724
Review of Pressurized-Water-Reactor-Related Thermal Shock	
Studies—RICHARD D. CHEVERTON, SHAFIK K. ISKANDER,	
AND DAVID G. BALL	752
Pressurized Thermal Shock Experiments with Thick Vessels-	
ROBERT H. BRYAN, JOHN G. MERKLE, RANDY K. NANSTAD,	
AND GROVER C. ROBINSON	767
CRACK ARREST THEORY AND APPLICATIONS: PART II—FATIGU	E
Fatigue Crack Propagation Behavior and Damage Accumulation Relationships in an Aluminum Alloy—	
BRIAN P. D. O'CONNOR AND ALAN PLUMTREE	787

Fatigue Crack Growth at High Load Ratios in the Time-	
Dependent Regime—THEODORE NICHOLAS AND	
NOEL E. ASHBAUGH	800
Threshold and Nonpropagation of Fatigue Cracks Under Service	
Loading-D. E. CASTRO, GUNTER MARCI, AND D. MUNZ	818
Fatigue Crack Growth Rate Properties of SA508 and SA533	
Pressure Vessel Steels and Submerged-Arc Weldments in a	
Pressurized Water Environment—WILLIAM A. LOGSDON,	
PETER K. LIAW, AND JAMES A. BEGLEY	830
Fatigue Crack Growth in Aircraft Main Landing Gear Wheels-	
ARVIND NAGAR	868
Near-Threshold Crack Growth in Nickel-Base Superalloys	
R. H. VAN STONE AND D. D. KRUEGER	883
Effect of Frequency on Fatigue Crack Growth Rate of Inconel 718	
at High Temperature—TUSIT WEERASOORIYA	907

INDEXES

Author Index	927
Subject Index	929

ISBN 0-8031-0972-5