TECHNICAL ADVANCES IN PACKAGING WITH FLEXIBLE BARRIER MATERIALS

STP 548

TECHNICAL ADVANCES IN PACKAGING WITH FLEXIBLE BARRIER MATERIALS

A symposium sponsored by Committee F-2 on Flexible Barrier Materials and Committee D-10 on Packaging AMERICAN SOCIETY FOR TESTING AND MATERIALS Rutgers University, New Brunswick, N.J. 12 April 1972

ASTM SPECIAL TECHNICAL PUBLICATION 548

List price \$4.25 04-548000-11

i

©by AMERICAN SOCIETY FOR TESTING AND MATERIALS 1973

Library of Congress Catalog Card Number: 73-85327

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Printed in West Point, Pa.
December 1973

Foreword

The symposium on Technical Advances in Packaging with Flexible Barrier Materials was presented at Rutgers University, New Brunswick, N.J., 12 April 1972. The symposium was sponsored by ASTM Committee F-2 on Flexible Barrier Materials with the cooperation of ASTM Committee D-10 on Packaging and the Rutgers' Center for Packaging Science and Technology. Karl W. Ninnemann, Allied Chemical Corp., Morristown, N.J. served as presiding chairman over the symposium and J. A. Yourtee was responsible for the coordination of the symposium volume.

Related ASTM Publication

Paper and Paperboard—Characteristics, Nomenclature, and Significance to Tests, STP 60 B (1963), \$4.00 (04-060020-11)

Contents

Introduction	1
Heat Seal Thickness-Strength Correlations—DONALD MILLER	3
Procedure	6
Results	ϵ
Discussion	9
Conclusions	9
Analysis of Polychlorinated Biphenyls in Packaging Materials—	
J. R. GIACIN AND S. G. GILBERT	10
Toxicological Considerations	10
PCB Contamination of Foodstuff	12
Methodological Difficulties	12
Experimental Procedures	13
Results and Discussion	14
Conclusions	19
A Gravimetric Calibration Procedure for Modern Controls IRD-2 Infrared Water Vapor Diffusometer and Its Correlation with Results from ASTM Method E 96— N. D. BORNSTEIN AND LEROY PIKE	20
Gravimetric Calibration Procedure	22
Equipment	23
Preparation of Standard Film and Calculation of Calibration Constant for the IRD-2	23
Gravimetric Calibration Data Obtained and Some Observations from It	24
Observations from the Calibration Data and IRD-2	
Characteristics	25
Round Robin Comparison of the IRD-2 and ASTM Method	
E 96	26
Conclusions	20

Packaging of Liquids with Flexible Barrier Materials— X. J. R.	
AVULA	30
Basic Equations	31
Deformation of a Liquid-Filled Package	33
Stacking of Membrane Packages	37
Discussion and Conclusions	38
Pros and Cons of Biodegradation—W. A. PATTERSON	41
Alice, Litter, Scientific Bandwagons, and Archeologists	41
Is All This Activity Necessary or of Any Value?	42
What is Biodegradation?	43
Biodegradation is Neither Simple nor Necessarily a	
Fast Way Out	43
The Mechanism of Biological Attack	44
Degradation Microorganisms for Plastics	45
What are the Environmental Implications of a Biodegradable	
Polymer?	45
Biodegradation in Sanitary Landfills	46

