INSTRUMENTATION FOR MONITORING AIR QUALITY

INSTRUMENTATION FOR MONITORING AIR QUALITY

A symposium sponsored by the Environmental Protection Agency, the National Center for Atmospheric Research, and Committee D-22 on Methods of Sampling and Analysis of Atmospheres AMERICAN SOCIETY FOR TESTING AND MATERIALS Boulder, Colo., 14-16 Aug. 1973

ASTM SPECIAL TECHNICAL PUBLICATION 555 R. C. Barras, symposium chairman

List price \$15.25 04-555000-17

© by American Society for Testing and Materials 1974 Library of Congress Catalog Card Number: 74-76066

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Printed in West Point, Pa. June 1974

Second Printing, 1979 Baltimore, Md.

Foreword

The symposium on Instrumentation for Monitoring Air Quality was held at the University of Colorado in Boulder, Colo., 14-16 Aug. 1973. Committee D-22 on Methods of Sampling and Analysis of Atmospheres, the Environmental Protection Agency, and the National Center for Atmospheric Research sponsored the symposium. R. C. Barras, Atlantic Richfield Co., presided as symposium chairman.

Related ASTM Publications

- Interlaboratory Cooperative Study of the Precision and Accuracy of the Measurement of Nitrogen Dioxide Content in the Atmosphere Using ASTM Method D 1607, DS 55 (1974), \$5.00 (05-055000-17)
- Interlaboratory Cooperative Study of the Precision and Accuracy of the Measurement of Sulfur Dioxide Content in the Atmosphere Using ASTM Method D 2914, DS 55-S1 (1974), \$5.00 (05-055010-17)
- Interlaboratory Cooperative Study of the Precision and Accuracy of the Measurement of Total Sulfation in the Atmosphere Using ASTM Method D 2010, DS 55-S2 (1974), \$5.00 (05-055020-17)
- Interlaboratory Cooperative Study of the Precision of the Measurement of Particulate Matter in the Atmosphere (Optical Density of Filtered Deposit) Using ASTM Method D 1704, DS 55-S3 (1974), \$5.00 (05-055030-17)
- Interlaboratory Cooperative Study of the Precision and Accuracy of Measurement of Dustfall Using ASTM Method D 1739, DS 55-S4 (1974), \$5.00 (05-055040-17)

Contents

Introduction	1
Performance Evaluation of SO ₂ Monitoring Instruments—	
L. J. PURDUE	3
Performance Specifications Review of Methods	4 5
Conclusion	7
Selection of Continuous Sulfur Dioxide Monitors for Ambient	0
and Source Concentration Levels—R. C. NEUSCHELER	9
Discussion	9
Monitoring Sulfur Compounds by Flame Photometry—D. P. LUCERO AND J. W. PALJUG	20
Flame Photometric Detector FPD Sulfur Analyzer	20 24
Analyzer Output Response	28
Calibration	30
Operation and Maintenance	31
Applications	31
Performance Specifications	33
Monitoring Oxides of Nitrogen—An Overview—G. R. GOLDGRABEN	36
Ambient Air Monitoring	37
Occupational Health Monitoring	41
Stationary Source Analysis	41
Engine Exhaust Monitoring	42
Conclusions	43
Instrumentation for the Measurement of Nitrogen Dioxide—	
R. K. STEVENS, THOMAS CLARK, RALPH BAUMGARDNER,	44
AND J. A. HODGESON	
Discussion	45

Techniques for Continuous Monitoring of Hydrocarbons—D. A. MACK,	53
C. D. HOLLOWELL, AND R. D. McLAUGHLIN	52
Hydrocarbons in the Atmosphere	52
Classification of Instruments	53
Gaseous Hydrocarbon Monitoring Systems	53
Generally Employed Detection Techniques	57
Developing Detection Technologies	67
National Standards Conclusions	69 71
Performance of Hydrocarbon Monitoring Instrumentation—	
G. C. ORTMAN AND V. L. THOMPSON	74
Instrumentation	75
Gas Chromatography	78
Specialized Hydrocarbon Systems	80
Plumbing Problems—Gases for 6800 Hydrocarbon Analyzers—	
H. KAPLAN	85
Calibration Gas	85
Hydrogen Fuel	85
Combustion Air	86
Sampling Air	86
Tubing	87
Obtaining Reliable Performance from Hydrocarbon Analyzers—	
D. W. STEVENS	88
Background	88
System Description and Operation	89
Factors Affecting Performance	90
Obtaining Reliable Performance	91
Summary	99
Evaluation of New Ozone Monitoring Instruments by Measuring	
in Nonurban Atmospheres—T. A. CLARK, R. E. BAUMGARDNER,	
R. K. STEVENS, AND K. J. KROST	101
Experimental	102
Results and Discussion	104
Calibration Stability	105
Comparison of Measurements	105
Instrument Failures and Maintenance Requirements	110
Conclusions	111
Review of Commercial Ozone Measurement Instrumentation—	
DAVID CHAMBERLIN AND R. E. SANDERS	112
Brief Review of Wet Chemical Analytical Methods	113
Ozone—Specific Analytical Methods	114

Major Subsystems and Important Performance Parameters in	116
the Gas Chemiluminescent Analyzer	115
Important Operating Conditions and Maintenance Tasks	116
Recent Developments and Future Trends	117
Automatic Chemical Analysis—The First Line of Approach—	
R. D. GOLDBERG	118
Air Pollution Applications	118
Summary	122
Monitoring Trace Metal Particulates: An Evaluation of the Sam-	
pling and Analysis Problems—R. K. SKOGERBOE	125
The Blank Problem	125
Filter Efficiency	126
Analytical Determinations	133
Filter Media for Atmospheric Sampling and Analysis—	
W. J. SMITH AND A. L. BENSON	137
Some Problems	138
Filter Selection	139
Current Development Programs	142
Measuring Particulate Matter in Air—R. E. LEE, JR.	143
Definition of Particulate Matter	143
Concentration Measurement Methods	144
Particle Sizing Considerations	149
Particle Sizing Methods	152
Calibration of Size Classifying Devices	154
Conclusions	155
Recent Developments in In Situ Size Spectrum Measurement of	
Submicron Aerosols— R. B. HUSAR	157
Size Spectrometry by Optical Single Particle Counting	160
Instrument Performance	162
Description of the Ellipsoid Mirror Optical Counter	164
Theoretical Response of the Ellipsoid Mirror Optical Counter	165
Calibration with Polystyrene Latex Spheres	168
Electrical Aerosol Analyzer (EAA)	170
Principle of Operation	172
Calibration of the EAA	172
Size Resolution of the EAA	180
Diffusion Battery	183
▼	

