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Confidence Intervals and 
Hypothesis Tests 

CONFIDENCE INTERVALS and formal  hypothesis  tests are  two 
stat is t ical  me thods  that  can be  used for  dec is ionmaking.  A 
hypothes is  test controls  bo th  the false posi t ive decis ion er- 
ror  ra te  (a) and false negative decis ion e r ror  ra te  (/3). A con- 
f idence interval  controls  only the p robab i l i ty  of mak ing  a 
false posi t ive decis ion e r ror  (a) (for example,  concluding  
that  a site is c lean when  it is t ruly dirty).  However,  the prob-  
abi l i ty  of  making  a false negative decis ion e r ror  (/3) is f ixed 
at  50% for conf idence intervals  (i.e.,/3 = 0.5). 

A conf idence interval  and  a hypothes is  test  can  be very 
similar .  Consider  the p rob l em of de te rmin ing  whe ther  the 
m e a n  concent ra t ion  (/z) of  a site exceeds a c leanup  s t anda rd  
(CS), where  the con taminan t  is no rma l ly  dis t r ibuted.  A con- 
f idence interval  could  be cons t ruc ted  for  the mean,  or  a t- 
test  could  be used to test the s tat is t ical  hypothesis :  

H0:/x > CS vs. Ha: tz < CS 

If  the site manager ' s  false negative dec is ion  e r ror  rate  is 0.5 
(i.e.,/3 = 0.5), these me thods  are the same. Addit ional ly,  wi th  
a fixed a, the sample  size of a conf idence interval  inf luences 
only the wid th  of the interval  (s ince/3 = 0.5). Similarly,  the 
sample  size of a t-test inf luences /3  and ~ (where ~ = uppe r  
value of the gray  region minus  the lower  value of the gray re- 
gion). However ,  by  solving for the sample  size us ing a t-test, 
one can subst i tu te  back  into the sample  size equat ion  for a 
conf idence interval  and  compute  a width  cor respond ing  to 

A 

this sample  size. Then the results  of the two methods  will be 
identical .  

Al though the results  of the hypothes is  test  and  the confi- 
dence interval  m a y  be identical ,  the hypothes is  test has  the 
added  advantage  of  a power  curve. The power  curve is de- 
f ined as the p robab i l i ty  of  reject ing the null  hypothesis .  An 
ideal  power  curve is 1 for those  values co r respond ing  to the 
a l ternat ive  hypothes is  (all ~ < CS in the example  above) and  
0 for those values cor respond ing  to the null  hypothesis  (al l /z  
> CS in the example  above). The power  curve is thus a way  to 
tell how well a given test  pe r fo rms  and  can be used  to com- 
pare  two or  more  tests. Addit ional ly,  if the null  hypothes is  is 
not  rejected, the power  curve gives the dec i s ionmaker  some 
idea  of  whe ther  or  not  the design could  actual ly  reject  the 
null  hypothes is  for  a given level (/z). 

There is no co r respond ing  idea  of a p o w e r  curve in t e rms  
of conf idence intervals.  To derive a power  curve, one would  
need  to t r ans l a t e  the  con f idence  in te rva l  in to  the  corre-  
s p o n d i n g  tes t  (i.e., a t - test)  and  then  c o m p u t e  the  p o w e r  
curve. Addi t ional ly ,  whe reas  a s ta t i s t ica l  test  accoun t s  di- 
rect ly for the false negative decis ion error,  a conf idence  in- 
terval does not  (/3 = 0.5). Finally,  a conf idence  interval  and  a 
s ta t is t ical  test  a lmos t  always are  based  on d i s t r ibu t iona l  as- 
sumpt ions ,  independence  assumptions, etc. If  these a s sump-  
t ions are violated,  it  m a y  be easier  to select an al ternat ive test  
(for example,  a non-pa rame t r i c  test) than  it is to derive an al- 
ternat ive conf idence  interval.  For  these reasons ,  this docu-  
men t  concent ra tes  its d iscuss ion on h3qaothesis testing. 
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Step 6: Specify Tolerable Limits 
on Decision Errors 

THE D A T A  Q U A L I T Y  OBJECTIVES PROCESS 

J State the Problem J 

[ Identify the Decision [ 
I 

Identify Inputs to the 

Define the Stu~ Boundaries 

a Decision Rule 

Specify Limits on Decision Errors 

Optimize the Design for Obtaining Data 

S P E C I F Y  L IMITS 
ON DECIS ION E R R O R S  

B 

P u ~  

To specify the decision maker's tolerable limits on 
decision errors, 

Activities 

�9 Determine the possible range of the 
parameter of interest 

�9 Ident i fy  the decision errors end choose the 
null hypothesis 

�9 Spec i f y  a range of possible rmrameter values 
where the consequences of de~sion errors 
are relatively minor (gray region). 

�9 Assign probability values to points above and 
below the action level ~at  reflect the 
tolerable probability for the occurrence 
of decision errors. 

PURPOSE 

The purpose  of  this s tep is to specify the  dec i s ionmaker ' s  tol- 
erable  l imits  on decis ion errors,  which  are  used to es tabl ish  
pe r fo rmance  goals for  the  da ta  col lect ion design. 

EXPECTED OUTPUTS 

�9 The dec i s ionmaker ' s  to lerable  decis ion e r ror  rates  based  
en  a cons idera t ion  of the consequences  of making  an  in- 
correct  decision.  

BACKGROUND 

Decis ionmakers  are  in teres ted  in knowing the t rue  state of  
some feature  of the environment .  Since da ta  can only esti- 
ma:e this  state,  dec is ions  tha t  are  based  on m e a s u r e m e n t  

* Pages 32-36 from EPA's QA/5-4 (Ch. 2, Ref 1). 

da ta  could  be  in e r ror  (decis ion error) .  Most  of  the t ime  the 
correct  decis ion will be made;  however,  this chap te r  will fo- 
cus on  control l ing the less l ikely poss ibi l i ty  of mak ing  a deci- 
s ion error.  The goal  of  the p lanning  team is to develop a da ta  
col lect ion design tha t  reduces  the chance of making  a deci- 
s ion e r ror  to a to lerable  level. This s tep of  the  DQO process  
will provide  a m e c h a n i s m  for a l lowing the dec i s ionmaker  to 
define to lerable  l imits  on the  probabi l i ty  of  making  a deci- 
s ion error.  

There  are two reasons  why the dec i s ionmaker  cannot  know 
the t rue value of a popu la t ion  p a r a m e t e r  (i.e., the  t rue state 
of  some feature of the environment) :  

(1) The popu la t ion  of in teres t  a lmos t  always varies over  t ime  
and  space. L imi ted  sampl ing  will miss  some features  of 
this  na tu ra l  var ia t ion  because  it is usual ly  imposs ib le  or  
imprac t i ca l  to measure  every po in t  of a popula t ion .  Sam- 
pling design error occurs  when  the sampl ing  design is un- 
able  to cap ture  the comple te  extent  of na tu ra l  var iabi l i ty  
that  exists in the  t rue state of the environment .  

(2) Analyt ical  me thods  and  ins t ruments  are  never  absolute ly  
perfect,  hence a m e a s u r e m e n t  can only es t imate  the  t rue 
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value  of  an e n v i r o n m e n t a l  sample .  Measurement error 
refers to a combina t ion  of r a n d o m  and sys temat ic  er rors  
tha t  inevi tably arise dur ing  the var ious  steps of the mea-  
su rement  process  (for example,  sample  collection, sample  
handl ing,  sample  p repara t ion ,  sample  analysis ,  da ta  re- 
duct ion,  and  da ta  handling) .  

The combina t ion  of  sampl ing  des ign er ror  and  measure-  
men t  e r ror  is cal led total study error, which  m a y  lead  to a de- 
cision error.  Since it is imposs ib le  to e l iminate  e r ror  in mea-  
su rement  data,  bas ing  decis ions  on m e a s u r e m e n t  da ta  will 
lead  to the poss ib i l i ty  of  making  a decis ion error.  

The p r o b a b i l i t y  of  dec i s ion  e r rors  can  be con t ro l l ed  by  
adopt ing  a scientif ic  approach.  In  this  approach,  the  da ta  are  
used to select be tween one condi t ion  of the env i ronment  (the 
null hypothesis, Ho) and  an al ternat ive condi t ion  (the alterna- 
tive hypothesis, H~). The null  hypothes is  is t rea ted  like a base-  
l ine condi t ion  tha t  is p r e sumed  to be t rue in the  absence  of 
s t rong evidence to the  contrary .  This feature  provides  a way 
to guard  agains t  making  the dec is ion  er ror  that  the  decision-  
m a k e r  considers  to have the more  undes i rab le  consequences.  

A decis ion e r ror  occurs  when  the dec i s ionmaker  rejects  the  
null  hypothes is  when  it is true, o r  fails to reject  the null  hy- 
pothes is  when  it is false. These two types of decis ion errors  
a re  classif ied as false positive and false negative decis ion er- 
rors,  respectively.  They are  descr ibed  below. 

False Positive Decision Error--A false posit ive decis ion er- 
ro r  occurs  when  the null  hypothes is  (H0) is re jected when  it  
is true. Cons ider  an  example  where  the  dec i s ionmaker  pre- 
sumes  tha t  a cer ta in  waste  is haza rdous  (i.e., the  null  hy- 
pothes is  or  basel ine  condi t ion  is "the waste  is hazardous") .  If  
the  dec i s i onmake r  concludes  that  there  is insuff ic ient  evi- 
dence to classify the  waste  as haza rdous  when  it t ruly is haz-  
ardous ,  then  the dec i s ionmaker  would  make  a false posi t ive 
decis ion error.  A s ta t is t ic ian usual ly  refers to the  false posi-  
tive er ror  as a "Type I" error.  The measure  of  the size of  this 
e r ror  is cal led a lpha  (a), the level of  significance,  or  the size 
of  the  cri t ical  region.  

False Negative Decision Error--A false negative decis ion er- 
ror  occurs  when  the null  hypothes is  is not re jected when  it  is 
false. In  the above waste  example,  the false negative decis ion 
e r ro r  occurs  w h e n  the  d e c i s i o n m a k e r  conc ludes  tha t  the  
waste  is haza rdous  when  it t ru ly  is not hazardous .  A stat ist i-  
c ian usual ly  refers to a false negative er ror  as a "Type II" er- 
ror.  The measure  of the size of this  e r ror  is cal led be ta  (fl), 
and  is also known as the complemen t  of the power of a hy- 
pothes is  test. 

The def ini t ion of false posi t ive and  false negative decis ion 
errors  depends  on  the v iewpoint  of the decis ion maker.~ Con- 
s ider  the v iewpoint  where  a pe r son  has  been  p r e s u m e d  to be 
" innocent  unt i l  p roven  guilty" (i.e., H0 is "innocent";  Ha is 
"guilty"). A false posi t ive e r ror  would  be convict ing an inno-  
cent  person;  a false negative er ror  would  be not  convict ing 
the  guil ty person.  F r o m  the v iewpoin t  where  a person  is pre- 
sumed  to be "guilty unt i l  p roven innocent"  (i.e., H0 is "guilty"; 

1 Note that these definitions are not the same as false positive or false 
negative instrument readings, where similar terms are commonly 
used by laboratory or field personnel to describe a fault in a single re- 
suit; false positive and false negative decision errors are defined in the 
context of hypothesis testing, where the terms are defined with re- 
spect to the null hypothesis. 

Ha is "innocent"),  the er rors  are reversed.  Here,  the false pos- 
itive e r ror  would  be not  convict ing the guil ty person,  and  the 
false negative er ror  would  be convict ing the innocent  person.  

While  the poss ibi l i ty  of a decis ion e r ror  can never  be tota l ly  
e l iminated ,  it  can be control led.  To cont ro l  the  poss ib i l i ty  of  
making  decis ion errors,  the p lanning  t eam mus t  cont ro l  total  
s tudy error.  There are  m a n y  ways to accompl i sh  this,  includ-  
ing collect ing a large n u m b e r  of samples  (to control  sampl ing  
design error) ,  analyzing indiv idual  samples  several  t imes,  or  
using more  precise  l abora to ry  me thods  (to control  measure-  
men t  error) .  Bet ter  sampl ing  designs can  also be  developed to 
collect  da ta  tha t  more  accura te ly  and  efficiently represent  the 
popu la t ion  of interest .  Every s tudy will use a sl ightly differ- 
en t  m e t h o d  of  con t ro l l i ng  dec i s ion  er rors ,  d e p e n d i n g  on  
where  the largest  componen t s  of  total  s tudy e r ror  exist in the  
da ta  set and  the ease of  reduc ing  those e r ro r  componen t s .  Re- 
ducing the probabi l i ty  of  making  decis ion errors  general ly  in- 
creases costs. In  m a n y  cases control l ing decis ion e r ror  wi th in  
very smal l  l imits  is unnecessa ry  for making  a decis ion tha t  
satisfies the  dec i s ionmaker ' s  needs.  For  instance,  if the  con- 
sequences  of  decis ion errors  are  minor ,  a reasonable  decis ion 
could  be made  based  on relat ively crude da ta  (da ta  wi th  high 
total  s tudy error) .  On the o ther  hand,  if the consequences  of 
dec is ion  errors  a re  severe, the dec i s ionmaker  will  wan t  to 
control  sampl ing  des ign and  m e a s u r e m e n t  errors  wi th in  very 
small  l imits.  

To m i n i m i z e  unneces sa ry  effort  con t ro l l ing  dec is ion  er- 
rors,  the  p lanning  t eam mus t  de t e rmine  whe ther  reduc ing  
s a m p l i n g  des ign  and  m e a s u r e m e n t  e r rors  is neces sa ry  to 
meet  the dec i s ionmaker ' s  needs.  These needs are  made  ex- 
plici t  when  the decis ion m a k e r  specifies p robabi l i t i es  of de- 
cis ion errors  tha t  a re  tolerable.  Once these to lerable  l imits  on  
decis ion errors  are  defined,  then  the effort  necessary to ana-  
lyze and  reduce  sampl ing  design and  m e a s u r e m e n t  er rors  to 
satisfy these l imits  can  be de t e rmined  in Step 7: Opt imize  the 
Design for Obta in ing  Data. I t  m a y  be necessary  to i tera te  be- 
tween these two steps before  f inding to lerable  probabi l i t i es  
of  decis ion errors  that  are  feasible given resource  const ra ints .  

ACTIVITIES 

Determine the possible range of  the parameter o f  interest. Es- 
tabl ish the  possible  range  of the p a r a m e t e r  of in teres t  by  es- 
t imat ing  its l ikely uppe r  and  lower  bounds .  This will help fo- 
cus the r ema in ing  activit ies of this  s tep on only the  re levant  
values of  the parameter .  For  example ,  the range  of the pa-  
r a me te r  shown in Figs. 6-1 and  6-2 at  the  end of  this  chap te r  
is be tween 50 and 200 ppm.  His tor ical  and  doc umen ted  ana-  
lytical  da ta  are  of great  help in es tabl ishing the potent ia l  pa-  
r ame te r  range.  

Identify the decision errors and choose the null hypothesis. 
Define where  each decis ion er ror  occurs  relat ive to the ac t ion 
level and  es tabl ish  which  decis ion e r ror  should  be def ined as 
the  null  hypo thes i s  (base l ine  condi t ion) .  This p rocess  has 
four  steps: 

(1) Define both types of  decision errors and establish the true 
state of  nature for each decision error. Define bo th  types of 
dec is ion  errors  and  de t e rmine  which  one occurs  above 
and  which  one occurs  be low the ac t ion level. A decis ion 
e r ror  occurs  when  the da ta  mis lead  the dec i s i onmake r  
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FIG. 6.1--An example of a decision performance goal diagram baseline condition: Parameter exceeds action level. 
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FIG. 6.2--An example of a decision performance goal diagram baseline condition: Parameter is less than action level. 

into concluding  that  the p a r a m e t e r  of in teres t  is on one 
side of the ac t ion  level when  the t rue value of the p a r a m -  
eter  is on the o ther  side of the ac t ion  level. Fo r  example ,  
cons ider  a s i tua t ion  in which  a s tudy is be ing  conduc ted  
to d e t e r m i n e  if m e r c u r y  c o n t a m i n a t i o n  is c r ea t i ng  a 

hea l th  haza rd  and  EPA wants  to take ac t ion  if more  than  
5% of a popu la t ion  of fish have mercu ry  levels above a 
r i sk -ba se d  a c t i o n  level. In  th is  case,  a dec i s ion  e r r o r  
would  occur  if the  da ta  lead  the dec i s ionmaker  to con- 
c lude tha t  95% of  the me rc u ry  levels found  in the  f ish 
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popula t ion  were be low the ac t ion  level (i.e., the pa rame-  
ter  is the "95th percenti le"  of mercu ry  levels in the fish 
popula t ion)  when  the t rue 95th percent i le  of mercury  lev- 
els in the  f ish p o p u l a t i o n  was  above  the  ac t ion  level 
(which means  tha t  more  than  5% of the fish popu la t ion  
conta in  mercury  levels greater  than  the ac t ion  level). The 
o ther  decis ion e r ror  for this example  would  be that  the 
da t a  lead  the dec i s i onmake r  to conc lude  tha t  the 95th 
pe rcen t i l e  of  m e r c u r y  levels in the  f ish p o p u l a t i o n  is 
grea ter  t han  the ac t ion level when  the t rue 95th percent i le  
is less than  the ac t ion level. The "true state of nature"  is 
the ac tual  condi t ion  or  feature  of the env i ronment  tha t  
exists, bu t  is unknown  to the dec is ionmaker .  Each  deci- 
sion er ror  consists  of two parts ,  the t rue state of na ture  
and  the conclus ion that  the  dec i s ionmaker  draws.  Using 
the example  above, the t rue state of na ture  for  the first de- 
cision e r ror  is tha t  the 95th percent i le  of mercu ry  levels in 
the fish popu la t ion  is above the ac t ion  level. 

(2) Specify and evaluate the potential consequences of  each de- 
cision error. Specify the l ikely consequences  of mak ing  
each decis ion er ror  and  evaluate  thei r  potent ia l  severity 
in t e rms  of economic  and social  costs, h u m a n  heal th  and  
ecological  effects, pol i t ical  and  legal ramif ica t ions ,  and  so 
on. Consider  the al ternat ive act ions  that  would  be taken  
under  each decis ion e r ror  scenario,  as well as secondary  
effects of those  ac t ions .  F o r  example ,  in d e t e r m i n i n g  
whe the r  or  not  95% of a fish popu la t ion  conta in  mercu ry  
levels above a r i sk-based  ac t ion  level, there  may  be a vari- 
ety of potent ia l  consequences  of commi t t ing  a decis ion 
error.  In  the first decis ion er ror  descr ibed  above, where  
the  dec i s ionmaker  concludes  tha t  the 95th percent i le  is 
be low when the t rue 95th percent i le  was above the ac t ion  
level, the dec i s ionmaker  may  decide to cont inue  to al low 
fishing in the  waters  and  not  under take  any c leanup ac- 
tivity. The resul t ing consequences  might  include h u m a n  
heal th  and  ecological  effects f rom consumpt ion  of con- 
t amina t ed  fish by h u m a n s  and o ther  animals ,  economic  
and social  costs of hea l th  care and  family  d is rupt ion,  and  
damaged  credibi l i ty  of EPA when  (and if) the decis ion er- 
ror  is detected.  If  the o ther  type of decis ion er ror  is com- 
mi t ted ,  where  the  dec i s ionmaker  decides  tha t  the  95th 
percent i le  exceeds the ac t ion  level when  the t rue 95th per-  
centi le is be low the ac t ion  level, the dec i s ionmaker  might  
ban  all f ishing in the local  waters  and  ini t ia te  c leanup ac- 
tivities. The consequences  might  include economic  and  
social  costs  of  lost  revenues and  job  d i sp lacement  in the 
fishing industry,  damaged  credibi l i ty  for EPA when  the 
c leanup activit ies expose the  na ture  of  the decis ion error ,  
and  the threa t  of lawsui ts  by  fishing interests .  

Evaluate the severity of potent ia l  consequences  of decis ion 
errors  at different points  wi th in  the domains  of each type 
of decis ion error,  since the severity of consequences may  
change as the pa rame te r  moves fur ther  away from the ac- 
t ion  level. Cons ider  w h e t h e r  o r  no t  the  consequences  
change abrupt ly  at some value, such as a threshold  heal th  
effect level; the dec is ionmaker  may  want  to change the tol- 
erable l imit  on the decision error  at  such a point.  

(3) Establish which decision error has more severe conse- 
quences near the action level. Based on the evaluat ion of 
potent ia l  consequences  of decis ion errors,  the decis ion-  
m a k e r  shou ld  d e t e r m i n e  w h i c h  dec i s ion  e r ro r  causes  

(4) 

grea ter  concern  when  the t rue p a r a m e t e r  value is near  the 
ac t ion level. I t  is impor t an t  to focus on the region  near  the 
ac t ion  level be c a use  this  is whe re  the  t rue  p a r a m e t e r  
value is mos t  likely to be when  a decis ion er ror  is made  
(in o ther  words,  when  the t rue p a r a m e t e r  is far  above or  
far  be low the ac t ion  level, the da ta  are  m u c h  more  l ikely 
to indicate  the  correct  decision).  This de t e rmina t ion  typ- 
ically involves value j udgmen t s  about  the relat ive severity 
of different  types of consequences  wi th in  the context  of 
the problem.  In the  fish con tamina t ion  p rob l em above, 
the dec i s ionmaker  would  weigh the potent ia l  hea l th  con- 
sequences  f rom a l lowing  peop le  to c o n s u m e  con tami -  
n a t e d  fish versus  the  e c o n o m i c  and  soc ia l  d i s r u p t i o n  
f rom bann ing  all f ishing in the communi ty .  In  this  case, 
the dec i s ionmaker  might  careful ly cons ider  how uncer-  
ta in  or  conservat ive the r i sk-based  act ion level is. 
Define the null hypothesis (baseline condition) and the al- 
ternative hypothesis and assign the terms "false positive" 
and "false negative" to the appropriate decision error. In 
p rob l ems  tha t  concern  regula tory  compl iance ,  h u m a n  
health,  or  ecological  risk, the decis ion er ror  tha t  has  the  
mos t  adverse potent ia l  consequences  should  be def ined as 
the null  hypothes is  (basel ine condit ion) .  2 In s ta t is t ical  hy- 
pothes is  testing, the  da ta  mus t  conclusively demons t r a t e  
tha t  the null  hypothes is  is false. That  is, the  da ta  mus t  pro-  
vide enough in fo rmat ion  to author i ta t ive ly  reject  the null  
hypothes is  (disprove the basel ine  condi t ion)  in favor of 
the  al ternative.  Therefore,  by  set t ing the null  hypothes is  
equal  to the t rue  state of na ture  that  exists when  the more  
severe decis ion er ror  occurs,  the dec i s ionmaker  guards  
agains t  making  the more  severe decis ion e r ror  by  placing 
the b u r d e n  of p roof  on demons t ra t ing  that  the mos t  ad- 
verse consequences  will not be likely to occur.  

It should  be no ted  that  the null  and  al ternat ive hypothe-  
ses have been  p r ede t e rmined  in m a n y  regulat ions.  If not, 
the  p l a n n i n g  t e a m  shou ld  def ine  the  nul l  hypo thes i s  
(basel ine condi t ion)  to co r respond  to the t rue state of na-  
ture for the  more  severe dec is ion  e r ror  and  define the  al- 
ternat ive hypothes is  to co r respond  to the t rue state of na-  
ture for the less severe decis ion error.  

Using the def ini t ions of null  and  al ternat ive hypotheses ,  
assign the t e rm "false positive" to the decis ion e r ror  in 
which  the dec i s ionmaker  rejects the null  hypothes is  when  
it is true, which  cor responds  to the  decis ion e r ror  wi th  the  
more  severe consequences  ident i f ied  in task  (3). Assign 
the t e rm "false negative" to the  decis ion er ror  in which  
the dec i s ionmaker  fails to reject  the null  hypothes is  when  
it is false, which  cor responds  to the decis ion er ror  wi th  
the  less severe consequences  ident i f ied  in task (3). 

2 Note that this differs somewhat from the conventional use of hy- 
pothesis testing in the context of planned experiments. There, the al- 
ternative hypothesis usually corresponds to what the experimenter 
hopes to prove, and the null hypothesis usually corresponds to some 
baseline condition that represents an "opposite" assumption. For in- 
stance, the experimenter may wish to prove that a new water treat- 
ment method works better than an existing accepted method. The ex- 
perimenter might formulate the null hypothesis to correspond to "the 
new method performs no better than the accepted method," and 
the alternative hypothesis as "the new method performs better than 
the accepted method." The burden of proof would then be on the ex- 
perimental data to show that the new method performs better than 
the accepted method, and that this result is not due to chanc ~ 
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Specify a range of  possible parameter values where the conse- 
quences of  decision errors are relatively minor (gray region). 
The gray region is a range of possible  p a r a m e t e r  values where  
the consequences  of a false negative decis ion er ror  are  rela- 
tively minor .  The gray region is bounded  on one side by  the 
ac t ion level and  on the o ther  side by that  p a r a m e t e r  value 
where  the consequences  of making  a false negative decis ion 
e r ror  begin  to be significant.  Es tabl i sh  this  b o u n d a r y  by  eval- 
ua t ing  the consequences  of not  reject ing the null  hypothes is  
when  it is false. The edge of the gray region should  be p laced  
where  these consequences  are  severe enough to set a l imi t  on 
the magn i tude  of this  false negative decis ion error.  Thus, the 
gray region is the a rea  be tween  this p a r a m e t e r  value and  the 
ac t ion  level. 

I t  is necessary  to specify a gray region because  var iabi l i ty  
in the popu la t ion  and  unavoidab le  imprec i s ion  in the mea-  
su remen t  sys tem combine  to p roduce  var iabi l i ty  in the da ta  
such that  a decis ion m a y  be "too close to call" when  the t rue 
p a r a m e t e r  value is very near  the ac t ion  level. Thus, the gray 
region  (or "area of uncer ta in ty")  es tabl ishes  the  m i n i m u m  
d i s t ance  f rom the ac t ion  level w h e r e  the  d e c i s i o n m a k e r  
would  like to begin  to cont ro l  false negative decis ion errors.  
In  statist ics,  the wid th  of this  interval  is cal led the " m i n i m u m  
detec table  difference" and  is often expressed as the Greek  let- 
ter  del ta  (A). The width  of the gray region is an essent ia l  par t  
of the calcula t ions  for de te rmin ing  the n u m b e r  of  samples  
needed to satisfy the DQOs, and  represents  one impor t an t  as- 
pect  of the decis ion maker ' s  concern  for decis ion errors.  A 
more  na r row  gray region  impl ies  a desire  to detect  conclu- 
sively the  condi t ion  when  the t rue p a r a m e t e r  value is close to 
the ac t ion level ("close" relat ive to the  var iabi l i ty  in the  data).  
When  the t rue value of the p a r a m e t e r  falls wi th in  the gray re- 
gion, the dec i s ionmaker  m a y  face a high p robab i l i ty  of mak-  
ing a false negative decis ion error,  s ince the da ta  m a y  not  
provide  conclusive evidence for reject ing the null  hypothesis ,  
even though it is actual ly  false (i.e., the da ta  may  be too vari- 
able to al low the dec i s ionmaker  to recognize  tha t  the pre- 
sumed  basel ine  condi t ion  is, in fact, not true). 

F r o m  a p rac t i ca l  s t andpoin t ,  the gray  reg ion  is an  a rea  
where  it will not  be feasible or  reasonable  to control  the false 
negat ive  dec i s ion  e r ro r  ra te  to low levels because  of h igh  
costs. Given the resources  tha t  would  be requi red  to re l iably  
detect  small  differences be tween the ac t ion  level and  the t rue  
p a r a m e t e r  value,  the  d e c i s i o n m a k e r  m u s t  ba l ance  the  re- 
sources  spent  on da ta  col lec t ion  wi th  the  expected conse-  
quences  of making  tha t  decis ion error.  For  example,  when  
test ing whe the r  a p a r a m e t e r  (such as the mean  concent ra-  
t ion) exceeds the  ac t ion  level, if the true p a r a m e t e r  is nea r  the 
ac t ion  level (relative to the expected var iabi l i ty  of the data),  
then the imperfec t  da ta  will tend  to be c lus tered a round  the 
ac t ion  level, wi th  some  values  above  the ac t ion  level and  
some below. In  this  s i tuat ion,  the l ike l ihood of commi t t ing  a 
false negative decis ion e r ror  will be large. To de te rmine  with  
conf idence whe the r  the t rue value of the  p a r a m e t e r  is above 
or  be low the ac t ion  level, the  dec i s ionmaker  would  need  to 
collect a large a m o u n t  of data,  increase  the prec is ion  of the 
measurements ,  or  both.  If taken  to an extreme,  the cost  of 
collecting da ta  can exceed the cost  of  making  a decis ion er- 
ror,  especial ly where  the  consequences  of the decis ion er ror  
m a y  be re la t ive ly  minor .  Therefore ,  the  d e c i s i o n m a k e r  
should  es tabl ish  the gray  region,  or  the  region where  it is not  

cr i t ical  to cont ro l  the false negative decis ion error,  by bal- 
ancing the resources  needed  to "make a close call" versus the  
consequences  of  making  tha t  decis ion error.  
Assign probability limits to points above and below the gray re- 
gion that reflect the tolerable probability for the occurrence of  
decision errors. Assign p robab i l i ty  values to poin ts  above and  
be low the gray region  tha t  reflect  the  dec i s ionmaker ' s  tolera-  
ble l imits  for making  an incorrec t  decision.  Select  a poss ible  
value of  the  parameter ;  then  choose  a p robabi l i ty  l imi t  based  
on an evaluat ion  of the  ser iousness  of the  potent ia l  conse- 
quences  of  making  the decis ion er ror  if the  t rue  p a r a m e t e r  
value is loca ted  at  tha t  point .  At a m i n i m u m ,  the decis ion-  
m a k e r  should  specify a false posit ive decis ion er ror  l imi t  at  
the  ac t ion  level, and  a false negative decis ion er ror  l imi t  at  
the  o ther  end  of the gray region.  For  m a n y  s i tuat ions,  the de- 
cis ion m a k e r  m a y  wish to specify add i t iona l  p robab i l i ty  l im- 
its at  o ther  poss ible  p a r a m e t e r  values. For  example,  cons ider  
a hypothet ica l  toxic subs tance  tha t  has a regula tory  ac t ion  
level of 10 ppm,  and  which  produces  threshold  effects in hu- 
mans  exposed  to m e a n  concen t ra t ions  above  100 ppm.  In 
this  s i tuat ion,  the dec i s ionmaker  may  wish to specify more  
s t r ingent  p robab i l i ty  l imits  at  tha t  th reshold  concen t ra t ion  of 
100 p p m  than  those specif ied at  10 ppm.  The tolerable  deci- 
s ion er ror  l imits  should  decrease  fur ther  away  f rom the ac- 
t ion level as the  consequences  of  decis ion e r ror  become more  
severe. 

Given the potent ia l ly  high cost  of control l ing sampl ing  de- 
sign er ror  and  m e a s u r e m e n t  e r ror  for env i ronmenta l  data,  
Agency decis ion making  is rare ly  suppor t ed  by  decis ion e r ror  
l imits  more  s t r ingent  than  0.01 (1%) for bo th  the  false posi-  
tive and  false negative decis ion errors.  This gu idance  recom-  
mends  us ing 0.01 as the s tar t ing po in t  for set t ing decis ion er- 
ro r  rates.  The mos t  f requent  reasons  for  set t ing l imits  grea ter  
(i.e., less s t r ingent)  than  0.01 are  that  the consequences  of  the 
decis ion errors  m a y  not  be severe enough to war ran t  set t ing 
decis ion e r ror  rates  that  are  this  extreme. The value of 0.01 
should  not be cons idered  a prescr ipt ive  value for set t ing de- 
cis ion e r ror  rates,  no r  should  it be cons idered  as the pol icy  of 
EPA to encourage  the use of any  pa r t i cu l a r  decis ion e r ror  

TABLE 6.1--Decision Error Limits Table Corresponding to 
Figure 6-1. (Action Level = 100 ppm). 

T y p e  Tolerable Probability 
True Correct of of 

Concentration Decision Error Incorrect Decision 

<60 ppm Not exceed F ( - )  5% 
60 to 80 Not exceed F ( - )  10% 

80 to 100 Not exceed F ( - )  gray region 
100 to 150 Does exceed F(+) 5% 

>150 Does exceed F(+) 1% 

TABLE 6.2--Decision Error Limits Table Corresponding to 
Figure 6-2. (Action Level = 100 ppm). 

T y p e  Tolerable Probability 
True Correct of of 

Concentration Decision Error Incorrect Decision 

< 60 ppm Not exceed F(+ ) 5% 
60 to 100 Not exceed F(+) 10% 
100 to 120 Does exceed F ( - )  gray region 
120 to 150 Does exceed F ( - )  20% 

>150 Does exceed F ( - )  5% 
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rate. Rather, it should be viewed as a starting point from 
which to develop limits on decision errors that are applicable 
for each study. If the decisionmaker chooses to relax the de- 
cision error rates from 0.01 for false positive or false negative 
decision errors, the planning team should document the rea- 
soning behind setting the less stringent decision error rate 
and the potential impacts on cost, resource expenditure, hu- 
man health, and ecological conditions. 

The combined information from the activities section of 
this chapter can be graphed onto a "Decision Performance 

Goal Diagram" or charted in a "Decision Error Limits 
Table" (see Figs. 6-1 and 6-2 and Tables 6-1 and 6-2). Both 
are useful tools for visualizing and evaluating all of the out- 
puts from this step. Figure 6-1 and Table 6-1 illustrate the 
case where the null hypothesis (baseline condition) is that 
the parameter of interest exceeds the action level (e.g., the 
waste is hazardous). Figure 6-2 and Table 6-2 illustrate the 
case where the null hypothesis (baseline condition) is that 
the parameter is less than the action level (e.g., the waste is 
not hazardous). 



MNL42-EB/May 2000 

Waste Pile Example 

I N T R O D U C T I O N  

IN THIS EXAMPLE five case studies with varying waste pile char- 
acteristics and alternate sampling designs are presented 
through the planning (DQO process), implementation, and as- 
sessment phases. For purposes of these case studies, the stake- 
holders have different prior knowledge for each case. How- 
ever, for consistency and to clearly present the development of 
the alternate sampling designs, each waste pile has the same 
characteristics, as described in the following paragraph. 

The waste pile in these examples consists of material that 
has been generated from a metals recovery process. The di- 
mensions of the waste pile are approximately 100 by 100 ft 
(38.48 m) with a maximum height of t0 ft (3.048 m); how- 
ever, more material was deposited in the front comer of the 
pile (see Fig. 1--Topographic Base Map). The material in the 
pile was generated from the same source and contaminated 
with lead. It is also known that no containerized waste has 
been disposed of in the waste pile. The waste pile is now a 
Solid Waste Management Unit (SWMU) under investigation 
as part of a RCRA Facility Investigation (RFI). Specific guid- 
ance is provided in ASTM's Standard Guide for Sampling 
Waste Piles, D 6009. Note that the sampling design for each 
case is denoted in the text of the example for clarification 
purposes; the appropriate sampling design is actually se- 
lected at Step Seven in the DQO process. 

For Case 1 (authoritative), the stakeholders expect the lead 
concentration to be extremely elevated due to process 
knowledge (perhaps several times the Toxicity Characteris- 
tic (TC) Rule regulatory level of 5.0 mg/L), and it is likely 
that the TCLP results will designate the material as haz- 
ardous. If the lead concentration in the TCLP greatly ex- 
ceeds the TC Rule regulatory level, then a statistical evalu- 
ation of the data would not be necessary. Thus, a complex 
sampling design would probably not be warranted in this 
case. In this case, the stakeholders have set a limit of $2,000 
for the analytical costs of the study. 

For Case 2 (simple random), preliminary data indicate that the 
mean lead concentration is near the regulatory limit. The 
stakeholders expect the pile to be relatively homogeneous; 
therefore, information on the distribution of lead is not im- 
portant. ( The entire waste pile will be considered the "reme- 
diation unit" in this case. (See Identifying Inputs to Decision 
section).) Although the degree of stratification is not known 
(either over space or by component), it is not expected to be 
significant because the recovery process that generated the 
waste was reportedly constant over the time period that the 
pile was generated and the particle sizes of the material in 

the pile could be considered homogeneous for the purposes 
of this investigation (also known as practically homoge- 
neous). The stakeholders have decided that a limit of $8,000 
for the analytical costs of the study will be set in this case. 

For Case 3 (systematic grid), a minimal amount of data exists 
on the material in the waste pile so that no assumptions 
concerning probable contaminant concentrations can be 
made initially. Information regarding contaminant distri- 
bution across the waste pile is a primary objective of the 
study. The stakeholders have decided that a limit of $5,000 
for the analytical costs of the study will be set in this case. 

For Case 4 (systematic grid with compositing), a minimal 
amount of data exists on the material in the waste pile so 
that no assumptions concerning probable contaminant 
concentrations can be made initially. Specific information 
regarding distribution of contamination across the waste 
pile is not an objective of the study. The degree of stratifi- 
cation is not known, but it is not expected to be significant. 
The stakeholders have set a limit of $2,000 for the analyti- 
cal costs of the study in this case. 

For Case 5 (stratified with systematic grid), it is discovered 
that a recent process change was incorporated in the met- 
als recovery process which significantly increased the lead 
concentration in the waste. Information exists suggesting 
that approximately the front 20% of the pile (note slightly 
greater elevation) was generated by the new process, while 
the material generated by the previous process is located in 
the remainder of the pile. Although two areas of different 
concentrations, or strata, exist within the waste pile, the 
two individual strata are internally homogeneous. One de- 
cision will be made on the entire waste pile. The stake- 
holders have decided on an analytical cost limit of $5,000. 

P L A N N I N G  P H A S E  

The DQO process and sampling design optimization process 
are outlined in the Planning Step section of this manual. The 
following information pertains to all five cases described in 
the introduction unless otherwise stated. Figures illustrating 
the location of the samples for each case are included at the 
end of the example. 

Data Quality Objectives (DQO) Process 

Step One: Stating the Problem 

The waste pile contains material that may be considered haz- 
ardous due to elevated lead content, Therefore, in each case the 
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company needs to determine if the material should be disposed 
of in a hazardous waste landfill under Subtitle C of RCRA (@ 
$500 per ton) versus a Subtitle D landfill (@ $50 per ton). The 
stakeholders in this study are the company that generated the 
waste (and will be conducting the sampling and analysis), the 
appropriate regulatory agencies, and in some cases represen- 
tatives from local communities. The company will be required 
to develop a sampling design that meets the objectives of the 
study and satisfies all pertinent regulatory requirements. 

Step Two: Identifying Possible Decisions 
The principal study question is: Is the material in the waste 
pile a RCRA hazardous waste (per 40 CFR 261.24)? The po- 
tential alternate actions are: (a) the material must be man- 
aged under Subtitle C of RCRA as hazardous waste or (b) the 
material may be disposed of in a permitted Subtitle D Mu- 
nicipal Solid Waste Landfill (MSWLF). 

Step Three: Identifying Inputs to the Decision 
�9 The decision on whether the material is hazardous or not 

will depend on the results of the Toxicity Characteristic 
Leaching Procedure (TCLP) test on the samples collected. 

The regulatory level for lead under the TC Rule is 5.0 mg/L. 
If the sample results exceed this value, the material will be 
considered hazardous. Totals results may be used to deter- 
mine if the lead concentration is elevated enough--at least 
20 times the regulatory level--to warrant completion of the 
TCLP test. (See EPA Method 1311, Section 1.1.) Note that 
the totals results may also be necessary to provide informa- 
tion for a subsequent risk assessment to determine the need 
to characterize soil and/or groundwater in areas adjacent to 
the waste pile if it is determined to be non-hazardous, and, 
in the case when the material is determined to be haz- 
ardous, for characterization required for off-site disposal by 
a permitted Treatment, Storage, Disposal Facility (TSDF). 
For purposes of this example, only Cases 1 and 2 will in- 
clude totals results; however, they may be included during 
the planning step based on the objectives of the study. 
In each case, the decision will be based on the entire waste 
pile; in other words, there will not be smaller "remediation 
units" within the pile where a Subtitle C versus D decision 
will be made. Either the entire pile is hazardous, or the en- 
tire pile is not. In certain situations, however, it may prove 
advantageous to employ different scales of decisionmak- 
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ing, such as with a two-part decision rule. An example of a 
two-part decision rule that could be used in this situation 
would be to (1) compare the mean of the pile to a regula- 
tory level and (2) make a decision on smaller remediation 
units of the pile if they contained lead greater than three 
standard deviations above the regulatory level. 

�9 For Cases 1-4 the material in the waste pile was generated 
by the same process, while two different processes were 
used in Case 5. 

�9 Lead is the contaminant of concern, although the exact dis- 
tribution across the pile is unknown. 

�9 Access to the pile is not limited, and traditional sampling 
equipment is expected to be adequate. 

�9 The analytical methods for lead (SW-846 Method 6010B 
for total lead and SW-846 Method 1311 for the TCLP) 
should be able to meet the required detection limits as the 
sample matrix is not expected to be difficult from a sample 
preparation or analysis standpoint. The totals results, if be- 
ing used for a subsequent risk assessment, must meet the 
quantitation limits required for the assessment. Also, an 
acceptable approach for addressing non-detects must  be 
decided upon prior to the investigation (see Data Quality 
Assessment section in the Manual). 

�9 The particle size of the material in the waste pile (approxi- 
mately 0.05 cm) could be considered homogeneous for 
purposes of this investigation. 

�9 "Real-time" field analytical techniques and innovative ap- 
proaches (such as XRF, field atomic adsorption or gas 
chromatography,  immunoassay-based  test kits, direct 
push technologies, etc.) could be used to improve decision- 
making in the field. These techniques would be incorpo- 
rated into the DQO process to provide flexibility in the field 
based on the information being generated on-site. They 
would also assist the investigators in determining the pres- 
ence and nature of contaminant heterogeneity. 

Step Four: Defining Boundaries 

The waste pile will be sampled using an appropriate design 
and analyzed for lead (totals and TCLP). The spatial bound- 
ary of the waste pile has been defined by the obvious eleva- 
tion above the surrounding terrain, the discoloration associ- 
ated with the material,  and the practically homogeneous 
particle size of the material. The samples will be collected 
from the surface to a 1-ft (0.30 m) depth, although in every 
case locations should be sampled to the base of the waste pile 
to obtain information about potential vertical stratification 
(Case 1 illustrates this approach). Samples will be collected 
within a reasonable time frame; however, a temporal bound- 
ary for an inorganic contaminant such as lead is generally 
not a concern. 

Step Five: Developing Decision Rules 

The decision rule will differ depending on the case under 
consideration. 

With an authoritative design (Case 1), the decision rule will 
be: 

If the average lead concentration for the data set, based on a 
judgmental approach, greatly exceeds the regulatory level of 
5.0 mg/L using the TCLP, then the material in the waste pile 
will be considered hazardous, and it will be managed under 

Subtitle C of RCRA. If the average concentration is near or 
below the regulatory level, a more complex sampling design 
will be developed. Since an authoritative design is being con- 
sidered for this investigation, a statistical test would not be 
applicable and, in fact, unnecessary if the results significantly 
exceed the regulatory level. 

With a probabilistic design (Cases 2-5), the decision rule will 
be: 

If the 90% (one-tailed) upper confidence level (UCL) of the 
mean concentration is equal to or exceeds the regulatory level 
of 5.0 mg/L using the TCLP, then the material in the waste 
pile will be considered hazardous, and it will be managed un- 
der Subtitle C of RCRA. If the 90% UCL is below the regula- 
tory level, the material will not be considered hazardous and 
will be managed under Subtitle D for Municipal Solid Waste 
Landfills. The use of the term "mean" assumes a normal dis- 
tribution of the data, an assumption that must  be checked. A 
lognormal distribution could also be evaluated, but the UCL 
would be computed differently. (See Data Quality Assess- 
ment section of this example.) 

Step Six: Specifying Limits on Decision Errors 

The sampling design error and measurement  error will be. 
minimized by using a well-prepared Project Plan (QAPP). 
The acceptable decision error is decidedly smaller for a Type 
I error (the material is actually hazardous when the study in- 
dicates it is not); therefore, the stakeholders have decided 
that any outcome where the lead concentration is near or be- 
low the regulatory level will result in the need for further in- 
vestigation using a more complex sampling design. However, 
because the risk associated with a Type II error (the material 
is determined to be hazardous when it is not) from an envi- 
ronmental or human health standpoint is less, a result that is 
significantly above the regulatory level will result in a deci- 
sion that is protective. Note that the decision error is more 
important when the mean of the data set is near the regula- 
tory level of 5.0 mg/L of lead. 

For a study implementing a probabilistic design, limits on 
decision errors will be set as follows: 

In the case of making a hazardous waste determination, we 
are comparing the 90% UCL of the mean concentration of the 
TCLP results for the sample to the Toxicity Characteristic 
(TC) Rule regulatory level of 5 mg/L. SW-846 suggests that 
the decision be based on a 90% one-tailed test [1]. The Type 
I error rate is set at 0.10 (10%). That is the probability of re- 
jecting the null hypothesis when it is actually true. See Ap- 
pendix B for additional information on hypothesis testing. 

Step Seven: Optimizing Data Collection Design 

Initial Design Selection 

The initial design selection for the Case 1 study is: 

Since available information strongly suggests that the lead 
concentration in the waste pile is elevated, an authoritative 
design is chosen initially for this case. However, if the sample 
results reveal values dose  to the regulatory limits, the sample 
design will need to be reconsidered in light of the new data. 
Two types of authoritative designs are to be considered: bi- 
ased, where the investigation targets worst case conditions, 
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or judgmental, where the investigator uses professional 
judgment and site information/observations to collect sam- 
ples that reflect average conditions on the site. The determi- 
nation of average conditions would be appropriate in this 
case because the facility has conceded that the lead concen- 
trations are elevated. Note that worst case conditions would 
be difficult to determine in a waste unit such as this but 
would be appropriate when process or site knowledge can be 
used to identify areas o f  highest contamination. Therefore, 
the specific sampling locations and the number of samples 
will be determined by the investigators in the field. As a gen- 
eral rule, at least four to six samples should be collected. This 
number allows for one sample to be taken in each of four 
quadrants and provides a minimum degree of coverage for 
the pile. 

The initial design selection for the Case 2 study is: 

The stakeholders expect the lead concentration to be near the 
regulatory limit; thus, a probabilistic approach will be cho- 
sen to validate data results. Simple random, stratified, and 
systematic (grid-based) designs provide information on the 
mean concentration of lead. Since the existence of strata is 
not expected (although could be discovered during the inves- 
tigation), the stratified design is at this time eliminated from 
consideration. Information on spatial distribution of lead in 
the pile is not a primary objective of this study, although it 
would confirm the investigators, assumptions concerning a 
non-stratified contaminant distribution. A simple random 
design is the simplest of the probabilistic sampling methods, 
but it is not ideally suited for providing information on spa- 
tial distribution. The systematic design, both without corn- 
positing or with compositing, provides some spatial distribu- 
tion information and is typically easy to implement. 
Compositing may increase precision and reduce decision er- 
rors by reducing the variability of the estimated mean. The 
design team will further consider all three alternatives in the 
Practical Evaluation step of the optimization process. 

The initial design selection for the Case 3 and Case 4 study is: 

The stakeholders do not have enough information to predict 
the lead concentration; thus, a probabilistic approach will be 
chosen to validate data results. Simple random, stratified 
random, and systematic (grid-based) designs will provide in- 
formation on the mean concentration of lead. Since the exis- 
tence of distinct strata is not expected, the stratified design is 
at this time eliminated from consideration. The design team 
will further consider the remaining alternatives in the Practi- 
cal Evaluation step. 

The initial design selection for the Case 5 study is: 

Due to the existence of a process change that affected the 
characteristics of the waste, and the expected stratification of 
the waste pile, a stratified sample design is chosen. 

Practical Evaluation 

The practical considerations that should be reviewed for each 
alternative include site access and conditions, equipment se- 
lection/use, experience needed, special analytical needs, and 
scheduling. The remaining alternatives do not have signifi- 
cant practical considerations that would limit their potential 
use for this study. However, the systematic design may result 

in sampling locations that are easier to survey and locate in 
the field, and it would provide better spatial coverage, if 
needed. Problems with access to all sampling locations, diffi- 
cult matrices (resistant to penetration by an auger, for exam- 
ple, or containing large pieces of debris or material), and 
sampling into native material below the pile should all be 
considered during the development of the Quality Assurance 
Sampling Plan. A standard operating procedures (SOP) man- 
ual for conducting the field sampling will influence the col- 
lection of a representative sample. 

Estimating the Number  o f  Samples Required for the 
Study 

The designs are evaluated for the number of samples that will 
be required: 

Step One: Determination of the Number of Samples 

Based on the use of an authoritative approach (Case 1): 

Samples will be collected within each quadrant of the waste 
pile and at the center of the pile. The boring at the center will 
be advanced to the base of the pile at two-foot intervals to 
provide information on the vertical concentration profile. 
The TCLP will be conducted on the top one-foot interval of 
the boring. 

Based on the use of a probabilistic approach (Cases 2 to 5): 

Simple random design (Case 2): 

An acceptable margin of error (A) and acceptable probability 
of exceeding that error (a) must be set. Then the appropriate 
number of samples to collect may be calculated by [1]: 

(tl-a + t1-/3)2S 2 
n = A2 

number of samples to collect, 
percentile value for the Student t distribution for 
n - 1 degrees of, freedom where a is the probability 
of making a Type I error, 

tl-~ = percentile value for the Student t distribution for 
n - 1 degrees of, freedom where fl is the probability 
of making a Type II error, 

s 2 = estimate of the variance (for individual samples), 
and 

A = RT - x (RT is the regulatory threshold, x is the esti- 
mated mean). 

Note that values of the Student t distribution may be ob- 
tained from Table 3 in Appendix D. Because the Type II error 
rate (the chance of deciding the waste is hazardous when it is 
not) is set at 50% (i.e., fl = 0.50), the associated t value be- 
comes zero and the t(1-t3) term drops from the equation. The 
discussion in Appendix B addresses the advantages obtained 
by setting the Type II error rate at a value less than 0.50. The 
resulting equation is used to calculate the number of 
samples: 

t2 a.S 2 
n - - -  A2 

In a preliminary pilot study, five samples were collected at 
random. Results for TCLP were 5.8, 10.5, 4.9, 2.1, and 5.4 
mg/L. The mean and standard deviation were estimated to be 
5.74 and 3.03, respectively. Note that the regulatory level for 

w h e r e :  

n = 

t l - a  = 



lead is 5.0 mg/L, and a was set at 0.10. Thus, the acceptable 
margin of error is calculated as zX = RT - x = -0 .74.  Using 
this sample size equation and the t value with n - 1 = 4 de- 
grees of freedom, 

1.5332.3.032 
n =  40 

(5 - 5.74) 2 

An iteration of the equation is then performed to stabilize the 
result using n = 40 and a t value for n - 1 = 39 degrees of 
freedom. The final sample size is calculated as: 

1.3032.3.032 
n = - 29 

(5 - 5.74) 2 

Systematic grid design (Case 3): 

The min imum number  of samples for a systematic grid sam- 
pling design may be est imated using the same approach de- 
scribed above for the Simple Random design. Such an ap- 
proach  should provide acceptable results if no strong cyclical 
patterns, periodicities, or  significant spatial correlations ex- 
ist between sample locations [1]. 

In Case 3, a preliminary pilot study was utilized to calcu- 
late the n u m b e r  of samples using the me thod  descr ibed 
above for Case 2. With five samples, the estimated mean  and 
s tandard deviation were 4.42 and 1.37, respectively. The "n" 
necessary to achieve a 10% probability of exceeding the ab- 
solute margin of error was calculated (after several iterations 
to stabilize the result) to be 11 samples. 

Systematic grid design with compositing (Case 4): 

Composi t ing samples, when appropriate,  reduces decision 
errors and increases the precision of the estimated sample 
mean  by reducing variability associated with that mean. With 
the a s sumpt ion  that  the analytical  var ia t ion is negligible 
compared  to the spatial variation, the sample variance with 
composit ing is equal to the variance without  composit ing di- 
vided by the number  of aliquots (k). The necessary number  of 
samples to achieve a desired a is inversely proport ional  to the 
number  of aliquots. The number  of aliquots (k) refers to the 
number  of  individual grab samples used to form each com- 
posite. For a simple r andom design, the number  of samples 
may  be calculated by: 

t~_~.(s2/k) 
n -- A2 

Using the same pilot study data for this case as used for Case 
3 and choosing k to be 5, the number  of samples necessary 
with composit ing would be reduced to 4. In  summary,  four 
composite samples will be collected and each will be com- 
prised of five aliquots that are distributed in four quadrants  
a round a center point, with the last aliquot for each sample 
coming from the center point. 

Stratified systematic design (Case 5): 

It is known that the waste pile consists of two different types 
of internally homogeneous  material, so the total waste pile is 
divided into L = 2 nonoverlapping strata. The number  of pop- 
ulation units in each of the two strata is denoted by N1 and 
N2, and the number  of necessary samples in h th stratum may 
be calculated by Nh = N.Wh, where Wh represents the weight 
or volume of material in the h th stratum. Since it is known 
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that approximately 20% of the waste pile was generated by a 
new process, W1 will be set equal to 0.2 and W2 will be 0.8. 
Preliminary data was collected f rom the pile. Three samples 
were collected from Strata 1, and five samples were collected 
f rom Strata 2. The mean  and standard deviation for Strata 1 
was calculated to be 9.9 and 0.7, respectively. For  Strata 2, 
the mean  and standard deviation were 3.5 and 0.7, respec- 
tively. The op t imum number  of samples may  be determined 
using proport ional  allocation by [1]: 

( t l _ a , d f  q- tl_13,df) 2 L 
n = A2 "~ Wh's~ 

h - 1  

percentile value for the Student  t distribution for 
n - 1 degrees of freedom where a is the probabili ty 
of making a Type I error, 

t l -~ = percentile value for the Student  t distr ibution for 
n - 1 degrees of f reedom where/3 is the probabili ty 
of making a Type II error, 

A = R T  - ~c (RT is the regulatory threshold, x is the esti- 
mated mean), 

s 2 = estimate of the variance (for individual samples), 
Wh = weight or  volume of material in the h th stratum, 
d f  = the degrees of  f reedom connec ted  with each t- 

quantile. 

The value of df may be calculated by: 

( /2/( ) 
dr= 1 

h = l  / I \ h = l  

Using the prel iminary pilot data results and the weighting 
values for the two strata, df is  calculated to be 2, and the cor- 
responding number  of samples is 30. The equations must  be 
solved iteratively, so the same calculations are repeated using 
n = 30. After several iterations, the total number  of samples 
is set at 17. Using proport ional  allocation with n = 17 sam- 
ples, 0.2.17 = 3 samples should be taken f rom Stra tum 1, 
while 0.8.17 = 14 samples should be collected from Stra tum 
2. The pilot study data may be used as a port ion of the final 
data set. Thus, no additional samples need to be collected 
f rom St ra tum 1, and nine addit ional  samples are needed 
f rom Stra tum 2. 

The mean  of the data set will be evaluated using the ap- 
proach in SW-846, Chapter Nine, where the upper  bound of 
the 90% (one-tailed) UCL of the mean  is compared  to the reg- 
ulatory level (in this case 5.0 mg/L for lead using the TCLP). 
The 90% one-tailed approach  has been determined by the 
EPA to provide an adequate margin of safety against making 
a wrong decision. 

Cost Evaluation 

This section evaluates the cost associated with the alternate 
sampling designs. 

For Case 1 (authoritative sampling design): 

A judgmental  authoritative design meets the requirements  
for the study; that is, it estimates the average lead concentra-  
tion (via the TCLP) for the material in the waste pile. "Aver- 
age" is used here rather  than "mean," which is associated 
with a probabilistic design. Seven samples will be collected at 

where 
t l - ~  = 
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an analytical cost of $250 per sample plus an additional 10% 
for various quality assurance samples. The total analytical 
cost for each remaining sampling design will be approxi- 
mately $1,925, which is under the analytical budget target of 
$2,000. Because a judgmental authoritative design provides 
information on the average concentration of lead in the waste 
pile (without the establishment of a confidence interval), it is 
selected as the preferred sampling design. Note that if this 
simple design did not meet the study objectives, then a mod- 
ification in either the design or the study objectives would be 
required. 

For Case 2 (simple random sampling design): 

The simple random design as well as both approaches to the 
systematic design (with and without compositing) meet the 
statistical requirements for the study in determining the esti- 
mated mean lead concentration (via the TCLP) for the mate- 
rial in the waste pile. If a simple random design or a system- 
atic grid design without compositing is chosen, 30 samples 
will be collected. The analytical cost per sample is $250 in- 
cluding the totals and TCLP, and various quality assurance 
samples would increase the cost by approximately 10%. Both 
the simple random design and the systematic grid design 
without compositing would generate a total analytical cost of 
about $8,250 (30 samples at $250 for the totals and TCLP 
plus 10% for quality assurance). The stakeholders decide on 
the simple random design because they expect the waste pile 
to be relatively homogeneous; therefore, information on the 
distribution of lead is not important. 

For Cases 3-4 (systematic grid sampling designs): 

Again the simple random design and both approaches to the 
systematic design (with and without compositing) meet the 
statistical requirements for the study in determining the esti- 
mated mean lead concentration (via the TCLP) for the mate- 
rial in the waste pile. If a simple random design or a system- 
atic grid design without compositing is chosen, 15 samples 
will be collected, to exceed the estimated number  of neces- 
sary samples. The analytical cost per sample is $250 for the 
TCLP, and various quality assurance samples would increase 
the cost by approximately 10%. Both simple random design 
and the systematic grid design without compositing would 
generate a total analytical cost of about $4,125 (15 samples at 
$250 each for the TCLP plus 10% for quality assurance). A 
systematic grid design with compositing may improve preci- 
sion over the systematic design without compositing. For 
Case 3, the analytical costs of each of the alternate sample de- 
signs are within the budget of $5,000. The stakeholders de- 
cide to use the systematic grid design because spatial infor- 
mat ion is desired. For Case 4, the systematic grid with 
compositing is chosen to improve precision and study effi- 
ciency (fewer samples collected). Four composite samples 
will be collected. The cost for that design is approximately 
$1,100). 

For Case 5 (stratified random sampling design): 

A stratified random approach is chosen due to the expected 
stratification of the waste pile. This approach should im- 
prove the efficiency of the final determination on the entire 
waste pile. The analytical costs are estimated at $4,675 (17 
samples at $250 each for the TCLP plus 10% for quality as- 

surance) and are within the proposed analytical budget of 
$5,000. 

(What if the Alternate Designs Do Not Meet the 
DQOs?) 

Note that if the sampling designs do not meet the study ob- 
jectives for each case, then a modification in either the design 
(more samples, use of sampling tools such as compositing or 
double sampling) or study objectives (change in the confi- 
dence interval, study boundaries, allowable decision error, or 
budget constraints) will then be required. 

I M P L E M E N T A T I O N  P H A S E  

For All Cases 

Implementat ion of the authoritative design, simple random 
design, systematic grid design, and the stratified random de- 
sign should not present any significant problems. The sam- 
ples will be collected using decontaminated hand augers, and 
glass pans will be used for sample mixing. The samples will 
be collected to a depth of 1 ft (0.61 m) at each location. Note 
that for Case 1 information will be collected to evaluate the 
potential presence of vertical stratification in the waste pile. 
In that Case, samples for vertical profiling will be collected at 
one location by a boring advanced to the base of the waste 
pile. Individual samples will be collected at 2-ft (0.61 m) in- 
tervals. The simple and stratified random samples may re- 
quire careful surveying to determine the location of the spe- 
cific sampling locations. See Figs. 5-9 at the end of this 
chapter for the sample locations. 

A S S E S S M E N T  P H A S E  

This section illustrates some of the graphical and statistical 
techniques available for completing the data quality assess- 
ment (DQA) step of a data collection activity. The U.S. EPA 
publication on Data Quality Assessment (QA/G-9) and the ac- 
companying software (DataQUEST) may be utilized as a tool 
by the investigator in this step [2,3]. Other references pro- 
vided in Chapter 4 of the manual should also be consulted. 
More detail is presented for Case 2 in order to illustrate a 
range of graphical and statistical assessment options. 

Review of  the DQOs and the Sampling Design 

In each case, the data collected during the study have met the 
DQOs. Sampling error was minimized through the selection 
and use of correctly designed sampling devises, careful im- 
plementation of the field sampling and handling procedures, 
and use of minimally biased subsampling procedures within 
the laboratory (e.g., using guidance in ASTM D 6051) as spec- 
ified in the QAPP and SOPs. The material that was sampled 
does not appear to have presented any special problems con- 
cerning access to sampling locations, equipment usage, par- 
ticle size distribution, or matrix interferences. The analytical 
package has been validated and the data generated are ac- 
ceptable for their intended purpose. 



FOR CASE l mAUTHORITATIVE SAMPLING 
DESIGN: 

P r e l i m i n a r y  D a t a  R e v i e w  

Results for the data collection effort are listed in Table 1-1. 

Statistical Quantities: 
Table 1-2 lists the totals and  TCLP m e a n  and  range of values 
for lead. As expected, the TCLP concent ra t ion  for lead greatly 
exceeds the TC Rule regulatory level of 5.0 mg/L. Totals and  
TCLP results of the vertical bor ing  indicate that  there is not  a 
discernable difference in  the lead concent ra t ion  at the 1 to 3 
and 3 to 5 ft intervals versus the surface interval (0 to 1 ft). 
This confirms the original assumpt ions  concerning vertical 
stratification that was based on knowledge of the waste gen- 
erated and the managemen t  practices of the facility. 

Graphical Representation for Case 1 data: 
Because of the l imited a m o u n t  of data collected and  the au- 
thoritative na ture  of the study design, no graphical depic- 
t ions were prepared. 

Conclusion 

Based on the established decision rule, the material  in the 
waste pile was determined to be hazardous for lead for Case 
1. The totals results could be used for profiling the waste to 

TABLE 1-1--Total and TCLP Results for Case 1. 

Location C3 C7 E5 G3 G7 

Totals result (mg/kg) 1400 975 1420 1800 1500 
TCLP result (rag/L) 26 20 30 42 32 

Vertical Boring Total Results, mg/kg TCLP Results, mg/L 

E5 (1-3 feet) 1600 28 
E5 (3-5 feet) 1350 32 

NOTE: 1 ft = 0.3048 m. 

TABLE 1-2--Totals and TCLP Statistical Results--Case 1. 

Totals Results, mg/kg TCLP Results, mg/L 
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ensure compliance with the Subtit le C permit  (see Identifying 
Inputs  to the Decision). 

FOR CASE 2 - -SIMPLE RANDOM SAMPLING 
DESIGN 

FOR CASE 2 CONSIDER TWO DIFFERENT 
DATA SETS, TERMED 2A (NORMAL 
DISTRIBUTION) AND 2B (NON-NORMAL 
DISTRIBUTION) 

FOR CASE 2A (NORMAL DISTRIBUTION): 

Preliminary Data Review 

The results for the data collection effort are listed in Table 2a- 
1. Thirty samples were collected to exceed twenty n ine  (the 
n u m b e r  of samples calculated to achieve the specified mar-  
gin of error). Note that the samples collected from the two 
vertical cores (Locations H8 and C4) indicate that  no signifi- 
cant  vertical stratification is present.  

10 

Average Range Average Range 

1419 975-1800 30 20-42 

A B C D E F G H I 

FIG. 2 a - l ~ L e a d  concentrat ion d i s t r i b u t i o n ~ C a s e  2a. 

TABLE 2a-l--Totals and TCLP Analytical Results for Case 2a. 
Location Totals Result, mg/kg TCLP Result, mg/L Location Totals Result, mg/kg TCLP Result, mg/L 

A5 1574 4.34 F3 1478 5.73 
A7 1047 2.95 F8 1678 5.36 
B1 405 1.58 G2 1415 6.34 
B4 328 2.86 G7 452 3.05 
B5 1234 5.03 G9 24 1.92 
B9 661 2.65 H1 219 2.57 
C1 1359 4.31 H3 189 0.74 
D2 327 1.61 H7 358 3.57 
D3 129 2.40 H8 89 1.00 
D7 924 5.29 I4 1592 5.36 
D9 1012 2.54 I8 2015 10.50 
E1 24 0.11 J2 861 6.30 
E6 1310 4.89 J3 654 4.61 
E7 605 6.04 J7 1014 4.70 
F2 1319 3.42 J9 689 2.55 
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_Graphical Representation: 

Figure 2a-1 shows the lead concentration isopleth based on 
the data generated. Although the graphical depiction has in- 
herent limitations, the distribution of lead across the waste 
pile can be readily observed. No spatial trends or distinct 
strata are apparent. 

Statistical Evaluation of  the Data 

TCLP versus Totals Results 

Figure 2a-2 is provided to evaluate the general relationship be- 
tween the TCLP and Totals results. The data presented is pro- 
vided for illustrative purposes, and conclusions should not be 
drawn about any relationship between the totals and the TCLP 
data for other data sets. However, the information concerning 
this relationship could be useful in the future to estimate in 
very general terms at what totals concentration is this waste 
likely to exceed the TCLP regulatory level (approximately 
-> 1,600 mg/kg). Remember, use the results of this comparison 
with caution, even with a similar waste stream. Note also that 
in most cases the investigators would not have completed the 
TCLP on samples collected at the following locations since the 
Total results were below 100 mg/kg--E1, G9, and H8. 

Histogram 

Figure 2a-3 is a histogram of the totals data, which provides a 
picture of the shape of the data and aids in identifying the 
symmetry and variability of the data set. Using a histogram, 

one may visually estimate the underlying distribution using 
binned data plotted against relative frequency of occurrence. 
If the data are symmetric, then the structure of the histogram 
will be symmetric around a central point, such as the mean, if 
the data set is sufficiently large (n > 25). Thus, using a his- 
togram, a normal distribution or a skewed distribution may be 
visually identified. The histogram provides a tool for prelimi- 
nary data assessment but is inadequate for verification of dis- 
tributional assumptions. TCLP data is used to test distribu- 
tional assumptions since the final decision will be made using 
this data set. EPA's QA/G-9 (Guidance for Data Quality As- 
sessment) provides guidance in creating a histogram. In this 
case, the histogram appears to display symmetric data [2]. 

Coefficient of  Variation 
The coefficient of variation (CV) may be used to quickly 
check if the data may be modeled by the normal curve by 
comparing the sample CV to 1. If the CV is greater than 1, 
then the data should not be modeled by a normal curve. How- 
ever, this method should not be used to conclude the oppo- 
site. (If CV < 1, the test is inconclusive). The CV is computed 
by dividing the standard deviation by the mean of the data 
set. In this case, the CV of the TCLP data is computed to be 
0.6, so the test is inconclusive. 

Box and Whiskers Plot 

An additional visual method of evaluating the shape of the 
data is a box and whiskers plot; it is useful in determining the 
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FIG. 2a-2--TCLP vs. total data--Case 2a. 
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symmetry of the data. See QA/G-9 for guidance on construct- 
ing Box and Whiskers plots. The TCLP data was used to gen- 
erate the box and whiskers plot for Case 2a seen in Fig. 2a-4. 

The box and whiskers plot consists of a central box, whose 
length denotes the spread of the bulk of the data (the central 
50%) and whiskers, whose length indicates the spreading of 
the distribution tails. The width of the box is arbitrary. The 
plus sign marks the sample mean, and the sample median is 
displayed as a line through the box. Any outlying data points 
are marked by a "*" on the plot. In Case 2 the identified "out- 
lier" is the TCLP result at Location J2 (10.5 mg/L). Tech- 
niques and approaches for determining when to keep or dis- 
card an identified outlier are discussed in Chapter 4 of the 
manual. Just because this technique identifies the data point 
as an outlier does not mean that the data point should be dis- 
carded. It could be an actual hot-spot within the pile rather 
than an error introduced through cross contamination of the 
sample or laboratory problems. If a valid reason for the "out- 
lier" cannot be identified, then further investigation at this lo- 
cation in the waste pile may be warranted. 

If the distribution is symmetrical, the box is divided into 
two equal halves; the whiskers are about the same length, and 
any extreme data points are equally distributed. According to 
the box and whiskers plot shown here, the data set appears to 
be symmetrical with one identified outlier. 

N o r m a l  Probabil i ty  Plot (Quan t i l e -Quant i l e  Plot) 

A normal probability plot, or Q-Q plot (Fig. 2a-5), may be 
used to visually check if a sample data set fits a specified 
probability model. The n TCLP data values, xi, are plotted 
against the expected data value, Yi, from the parent model 
probability distribution. A normal probability plot, which 
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FIG. 2a-5--Normal probability plot--Case 2a. 
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may be used to test the assumption of normality, is the graph 
of the quantiles of a data set against the quantiles of the nor- 
mal distribution. If the data follow an approximate linear 
trend on the plot, the validity of the normality assumption is 
probable. Refer to EPA QA/G-9 for guidance on generating a 
normal probability plot. The data set appears to be normally 
distributed from the Q-Q plot in Fig. 2a-5. However, the plot 
is a visual quantifier of the data and may not be used to fi- 
nalize distributional assumptions. 

Shap i ro -Wi l k  Test  for  N o r m a l i t y  

A more precise test for distributional assumptions is the 
Shapiro-Wilk test, which is conducted on the TCLP data to 
check for normality as follows: 

Compute d, the denominator of the test statistic, using the 
n data. 

d = x~ ~ xi = 132 
i = 1  

Compute k, where 
k = n/2 If n is even. 
k = ( n -  1)/2 I f n i s o d d .  

In this case, n = 30 and k = 15. From Table 1 in Appendix D 
(Table A-6 in Gilbert's Statistical Methods for Environmental 
Pollution Monitoring (1989)), the coefficients for the test may 
be obtained as al, a2 . . . . .  ak. [4]. Then compute the W value. 

W = ~ a i  ( X [ n - i + l l  - -  X[i I = 0 . 9 4 8  

If the computed W value is greater the tabled quantile at the 
given alpha significance level, then the assumption of nor- 
mality cannot be rejected. In this case, alpha is taken to be 
0.01. Because the W value for this example is higher than the 
0.01 quantile of 0.900, the assumption of normality cannot be 
rejected. W values may be obtained from Table 2 in Appendix 
D of this manual (also found in Gilbert, Table A-7 "Shapiro- 
Wilk Tables"). 

C h a r a c t e r i z a t i o n  o f  t h e  D i s t r i b u t i o n  

The statistical analysis of the TCLP data upheld the distribu- 
tional assumption of normality. Statistical quantities may 
now be calculated based on the assumption of normality. The 
results are displayed in Table 2a-2. 

To calculate the 90% UCL when the true standard devia- 
tion is not known, use the t distribution from Table 3 in Ap- 
pendix D. Calculate the 90% UCL by 

: 

= 3.8 + 1.311 2.1 

= 4.3 mg/L 

The tabulated "t value" (1.311) is based on a 90% one-tailed 
confidence interval with a probability of 0.10, ta.90 (see Table 
1 in Appendix D). 
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TABLE 2 a - 2 - - T o t a l s  a n d  TCLP R e s u l t s - - C a s e  2a. 

Standard Coefficient of 90% UCL 
Mean Range Deviation Variance Variation (one-tailed) 

Tota l s  Resul t ,  m g / k g  833 24-2015  
TCLP Resul t ,  m g / L  3.8 0 .1-10.5  2.1 4.6 0.6 4.3 

TABLE 2b-l--Totals and TCLP Analytical Results--Case 2b. 
Location Totals Result, mg/kg TCLP Result, mg/L Location Totals Result, rag/kg TCLP Result, mg/L 

A5 308 1.7 F3 1283 3.4 
A7 474 1.7 F8 320 1.7 
B1 570 2.3 G2 869 3.2 
B4 709 1.9 G7 331 3.0 
B5 415 2.7 G9 540 1.6 
B9 363 1.1 H1 502 1.7 
C1 516 3.0 H3 1118 4.3 
D2 72 1.2 H7 268 2.4 
D3 654 2.4 H8 348 1.5 
D7 643 2.0 I4 498 5.2 
D9 336 1.2 I8 461 4.6 
E1 777 2.2 J2 2259 7.1 
E6 234 1.0 J3 453 1.4 
E7 334 1.5 J7 2587 6.9 
F2 474 4.5 J9 283 1.9 

Conclus ion ~ 0.4 

The 90% UCL for the mean  of the  TCLP da ta  is ca lcula ted  
0.3 

to be 4.3 mg/L,  which  is tess than  the regula tory  level of 5.0 
mg/L.  Thus, in Case 2a the mate r ia l  in the  waste  pile is de- "~ 0.2 
t e rmined  not  to be haza rdous  for lead based  on the estab- 
l ished decis ion rule. Note that  the TCLP resul t  for the pi lo t  .Q 0.1 o 
s tudy (5.7 rag/L) ind ica ted  tha t  the was te  pi le  was haz-  ~ 0.0 
ardous;  however,  the  more  comprehens ive  evaluat ion us ing 
a s imple  r a n d o m  approach  shows tha t  the waste  pile is ac- 
tual ly  non-hazardous .  This i l lustrates  the potent ia l  advan- 
tage of an  expanded  charac te r i za t ion  effort based  on a prob-  
abi l is t ic  sampl ing  design. 

A quick check m a y  be pe r fo rmed  to de te rmine  if an ade- 
quate  n u m b e r  of samples  was col lected to satisfy specif ied er- 
ro r  l imits.  Refer to Chapter  2 of the Manual  to review the 9 
s amp le  size equat ion .  The s t a n d a r d  devia t ion  and  s amp le  8 
mean  are  entered  into  the sample  size equa t ion  wi th  n - 1 = 7 
29 degrees of f reedom and a = 0.10. 6 

t21_.s 2 1.3112.2.12 X 5 
rt -- A2 (5 -- 3 .8 )  2 6 4 

3 

Five is less than  thirty;  therefore ,  the  test  was suff ic ient ly  2 1 
powerful  and  achieves the Type I e r ror  rate  specif ied in the 0 
DQOs. 

FOR CASE 2B (NON-NORMAL DATA 
DISTRIBUTION): 

Prel iminary Data Review 

The resul ts  for the  da ta  col lect ion effort  are  l is ted in Table 
2b-1. 

Graohica l  Reoresenta t ion:  

See Fig. 2a- t  for  an  example  of  concen t ra t ion  isopleths  based  
on the da ta  generated.  
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FIG. 2b-l--Histogram--Case 2b. 
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FIG. 2b-2--Normal probability plot--Case 2b. 

Statistical  Evaluation of  the Data 

The CV test  yields a value of 0.6 for the TCLP data.  The CV 
value is less than  1. Thus, this me thod  is inconclusive,  and  
addi t iona l  s tat is t ical  evaluat ion is needed.  Figure  2b-1 is a 
h i s tog ram of  the totals  data.  

The h i s tog ram does not  appea r  to d isp lay  no rma l ly  dis- 
t r ibu ted  data.  A norma l  p robabi l i ty  plot  is cons t ruc ted  to fur- 
ther  test  the d is t r ibut ion  (Fig. 2b-2). 



The da ta  set does not  follow a l inear  trend; thus, the distr i-  
bu t i on  m a y  not  be normal .  The Shap i ro -Wi lk  test  is per-  
fo rmed  to fur ther  verify the devia t ion  f rom normal i ty  at a 
0.01 s ignif icance level. The test  es t imated  a W value of 0.827, 
which  is less than  the 0.01 quanti le ,  0.900 (found in Appendix  
D). Thus, the Shapi ro-Wilk  test  conf i rms the non-normal i ty  
of the data.  To check for lognormal i ty ,  a lognormal  probabi l -  
ity plot  may  be created (Fig. 2b-3) in which  the na tura l  loga- 
r i thms  of the da ta  are  p lot ted  agains t  the ca lcula ted  Y. If the 
da ta  lie l inear ly  on the lognormal  plot, the a s sumpt ion  of a 
lognormal  d i s t r ibu t ion  is s t rengthened.  

The natura l  logar i thms of the da ta  follow an approximate ly  
l inear  t rend on a logri thmic scale. Thus, the plot  agrees with 
the assumpt ion  of log-normality.  The Shapiro-Wilk test is a 
more  accurate  way to access lognormal i ty  by conduct ing the 
test on the natura l  logr i thms of the data. This method  pro- 
duces a W value of 0.946. Because the W value for this exam- 
ple is higher  than the 0.10 quanti le  of 0.939 (found in Appendix 
D), the assumpt ion  of log-normali ty  may  be accepted as valid. 

C h a r a c t e r i z a t i o n  o f  t h e  D i s t r i b u t i o n  

The s ta t i s t ica l  analysis  of  the  da ta  ind ica tes  a l og -norma l  
da ta  d is t r ibut ion.  Stat is t ical  quant i t ies  are  ca lcula ted  for the 
TCLP da ta  assuming  a log-normal  da ta  d is t r ibut ion.  The re- 
sul t ing values are d isp layed in Table 2b-2. The 90% u p p e r  
conf idence  l imi t  for the mean  is then c o m p a r e d  to the regu- 
la tory  l imit  of 5.0 mg/L. Several  methods  exist for es t imat ing  
the mean  of a log-normal  d i s t r ibu t ion  [4]. A s imple me thod  
for  e s t ima t ing  the mean  and  var iance  of l ogno rma l ly  dis- 
t r ibu ted  da ta  is i l lus t ra ted below. 

Compute  the log- t ransformed da ta  set Yi = in xi where  xi is 
the or iginal  da ta  set. Then compute  the m e a n  and var iance  of 
the log- t ransformed data.  

2 m 
Sy 

1 rz 

Y = ni~= Yi = 0.8 

1s 
n -  1 (Yi - y)2 = 0.3 

i = 1  
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FIG. 2b-3---Lognormal probability plotmCase 2b. 
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The upper  one-s ided 100(1 - a)% conf idence l imi t  for the 
mean  of log-normal ly  d is t r ibu ted  da ta  is ca lcula ted  by: 

syHl  o~ 
UCLI-~ = exp y + 0.5s 2 + X/-d-Z--fj 

where  ~ and s~ are  the mean  and  the variance,  respectively,  of 
the log- t ransformed da ta  set, n is the n u m b e r  of samples ,  and  
HI -~  is an empi r ica l  cons tan t  that  is provided  in tables  by 
Land  and  Gilber t  [4]. Fo r  a = 0.1, H~ ~ = 1.505, and  the 
UCL90 is ca lcula ted  to be 3.1 m g / L .  Note tha t  this fo rmula  for 
es t imat ing  the UCL on the mean  of a lognormal  d i s t r ibu t ion  
can  give unre l iab le  results  if n is small  even when  the da ta  are  
t ruly lognormal ly  dis t r ibuted.  Refer  to Singh for fur ther  in- 
fo rma t ion  on the lognormal  d i s t r ibu t ion  [5]. 

Conclusion 

The 90% UCL for the mean  of a log-normal  d i s t r ibu t ion  was 
ca lcula ted  to be 3.1 mg/L,  which  is less than  the regula tory  
level of 5.0 m g / L .  Thus, in Case 2b the ma te r i a l  in the waste  
pile was de t e rmined  not  to be haza rdous  for lead based  on 
the es tabl i shed  decis ion rule. 

F O R  CASE 3 m S Y S T E M A T I C  GRID W I T H O U T  
C O M P O S I T I N G  S A M P L I N G  D E S I G N :  

P r e l i m i n a r y  D a t a  R e v i e w  

Fif teen samples  were collected to exceed eleven (the calcu- 
la ted n u m b e r  of  samples  to achieve the des i red  marg in  of er- 
ror).  The results  for the da ta  col lect ion effort  are  l is ted in 
Table 3-1. 

Graohica l  Reoresenta t ion:  

A graphica l  depic t ion  of the da ta  could be completed .  (See 
Case 2a for an  example.)  

Statistical Evaluation o f  the Data 

A h is togram is not  cons t ruc ted  because  the n u m b e r  of sam- 
ples is too small  to accura te ly  use this  quant i f ier  (n < 25). A 
norma l  p robab i l i ty  plot  is cons t ruc ted  to test the a s sumpt ion  

TABLE 3-1--Totals and TCLP Results--Case 3. 
TCLP Result, TCLP Result, 

Location mg/ L Location mg/ L 

B2 0.7 F2 3.6 
B4 4.5 F4 5.2 
B6 7.9 F6 6.1 
B8 6.0 F8 7.4 
D2 4.1 H2 1.1 
D4 2.3 H4 9.6 
D6 5.2 H6 5.6 
D8 9.2 

TABLE 2b-2--Totals and TCLP Statistical Result--Case 2b. 

Standard Coefficient of 90% UCL 
Mean Range Deviation Variance Variation (one-tailed) 

Totals Results, mg/kg 633 72-2587 
TCLP Results, mg/L 2.7 1.0-7.1 1.6 2.6 0.6 3.1 
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of normal i ty  (Fig. 3-1). Again, the TCLP da ta  is used to test 
for normal i ty .  

The da ta  set appears  to be normal ly  d is t r ibu ted  f rom the Q- 
Q plot. The Shapi ro-Wilk  test  is conduc ted  on the TCLP da ta  
to fur ther  val idate  the d i s t r ibu t iona l  a s sumpt ion  of normal -  
ity. The W value is 0.939, which  is h igher  than  the 0.01 quan- 
t i le  of 0.855 ( found in Table 2 of Appendix  D), so the  as- 
sumpt ion  of normal i ty  cannot  be rejected. 

C h a r a c t e r i z a t i o n  o f  t h e  D i s t r i b u t i o n  

The stat is t ical  analysis  of the da ta  upheld  the  d i s t r ibu t iona l  
a s sumpt ion  of  normal i ty .  Stat is t ical  quant i t ies  may  now be 
ca lcula ted  based  on the a s sumpt ion  of normal i ty .  The resul ts  
are  d isp layed in Table 3-2. 

To calculate  the 90% UCL, use the t -dis t r ibut ion:  

90% UCL for TCLP da ta  = 2-+ t l - c~ ,n_ l (~n  ) 

= 6.3 + 1.345 2.6 

= 7.2 mg/L 

The tabu la ted  "t value" (1.345) is based  on a 90% one-tai led 
conf idence  interval  wi th  a p robabi l i ty  of 0.10 and  14 degrees 
of f reedom, t0.90,14 (Table 3 in Appendix  C). 

which  is less than  fifteen, therefore  a sufficient n u m b e r  of  
samples  was collected. 

F O R  CASE 4 - - S Y S T E M A T I C  GRID W I T H  
C O M P O S I T I N G  S A M P L I N G  D E S I G N :  

P r e l i m i n a r y  D a t a  R e v i e w  

Four  samples  were collected as specif ied by the sample  size 
equation.  The results  for the da ta  col lect ion effort are  l is ted 
in Table 4-1. 

Statistical Evaluation of  the Data 

A h i s tog ram is not  cons t ruc ted  because  the n u m b e r  of sam- 
ples is too small  to accura te ly  use this quantif ier .  A no rma l  
p robab i l i ty  plot  is cons t ruc ted  on the TCLP da ta  to test  the 
a s sumpt ion  of normal i ty  (Fig. 4-1). 

The da ta  set appears  to be normal ly  d i s t r ibu ted  f rom the 
no rma l  p robab i l i ty  plot. The Shapi ro-Wilk  test  is conduc ted  
to fu r the r  va l ida te  the  d i s t r i b u t i o n a l  a s s u m p t i o n .  The W 
value (Table 2 in Appendix  D) is 0.903, which  is h igher  than  
the 0.01 quant i le  for the sample  size of 0.707, so the assump-  
t ion of  normal i ty  cannot  be rejected. However,  it  should  be 
noted  that  bo th  the Q-Q plot  and  the Shapi ro-Wi lk  test have 
low power  to detect  small  devia t ions  f rom normal i ty  when  n 
is so small .  

Conclusion 

The 90% UCL for the mean  of the TCLP da ta  is 7.2 mg/L,  
which  is greater  than  the regula tory  level of 5.0 mg/L.  Thus, 
in Case 3 the mate r ia l  in the waste  pile is de te rmined  to be 
haza rdous  for  lead based  on the es tabl i shed  decis ion rule. 

A quick  check is p e r f o r m e d  to de t e rmine  if a suff ic ient  
n u m b e r  of samples  were col lected to satisfy specif ied deci- 
s ion er ror  l imits  on the test  for whe the r  the waste  pile is haz-  
ardous.  The s t anda rd  devia t ion  and  sample  mean  are  entered  
into the  sample  size equat ion  with  n - 1 = 14 degrees of free- 
d o m  and  a = 0.10. The ca lcu la ted  n u m b e r  is six samples ,  

C h a r a c t e r i z a t i o n  o f  t h e  D i s t r i b u t i o n  

The stat is t ical  analysis  of the totals  da ta  uphe ld  the dis t r ibu-  
t ional  a s s u m p t i o n  of  normal i ty .  S ta t i s t ica l  quant i t ies  m a y  

TABLE 4-1--Totals and TCLP 
Results for Case 4. 

Location TCLP Result, mg / L 

C2 4.8 
C8 3.4 
H2 4.1 
H8 4.9 
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FIG. 3-1mNormal probability plot. 
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FIG. 4-1mNormal probability plot for Case 4. 
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TABLE 3-2 Totals and TCLP Statistical Result--Case 3. 

Standard Coefficient of 90% UCL 
Mean Range Deviation Variance Variation (one-tailed) 

TCLP Results, mg/L 6.3 2.2-9.9 2.6 6.6 0.4 7.2 
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TABLE 4-2--Totals and TCLP Statistical Results--Case 4. 

Standard Coefficient of 90% UCL 
Mean Range Deviation Variance Variation (one-tailed) 

TCLP Results, mg/L 4.3 3.4-4.9 0.3 0.1 0.1 4.6 

now be ca lcula ted  based  on the a s sumpt ion  of normal i ty .  The 
results  are d isp layed in Table 4-2. 

Conclusion 

The 90% UCL for the mean  of the TCLP da ta  is 4.6 mg/L,  
which  is less than  the regula tory  level of 5.0 mg/L.  Thus, in 
Case 4 the  mate r ia l  in the waste  pile is de te rmined  to be non- 
haza rdous  for lead  based  on  the es tabl ished dec is ion  rule. 

A quick  check is p e r f o r m e d  to d e t e r m i n e  if a suff ic ient  
n u m b e r  of  samptes  were collected to satisfy specif ied deci-  
s ion er ror  l imits  on the test  for whe the r  the waste  pile is haz-  
ardous.  The s t andard  devia t ion  and sample  mean  are  entered  
into the sample  size equa t ion  wi th  n - 1 = 3 degrees of free- 
d o m  and  a = 0.10. The ca lcu la ted  n u m b e r  is one sample ,  
which  is less than  four, therefore  a sufficient  n u m b e r  of sam- 
ples was collected. 

F O R  CASE 5 - - S T R A T I F I E D  R A N D O M  
S A M P L I N G  D E S I G N :  

Preliminary Data Review 

Three samples  are  col lected for s t r a tum one, and  four teen 
samples  are collected f rom S t r a tum 2 as ca lcula ted  in the 
sample  size equat ion  for p ropor t iona l  al locat ion.  The results  
for  the da ta  col lect ion effort are  l isted in Table 5-1. 

Characterization o f  the Distribution 

Stat is t ical  quant i t ies  may  now be calculated.  The results  are  
d isp layed in Table 5-2. 

Fo r  a s t rat i f ied design which  considers  mul t ip le  strata,  the 
overall  mean  concent ra t ion  for the waste  pile, Xtotal, may  be 

ca lcula ted  us ing the fol lowing fo rmula  [6]: 

L 
xto~l = ~_, Wh'xh = 0.8.3.7 + 0.2"9.9 = 4,9 

h=l 

where  X-h is equal  to the m e a n  of  the individual  s t r a tum (com- 
pu ted  as shown above for Case 2 a - - S i m p l e  Random) ,  Wh is 
equal  to the weight  of the individual  s t ra tum,  h is the  indi- 
vidual  s t ra tum,  and  L is the total  n u m b e r  of s t rata .  

The s t anda rd  devia t ion  of the  overall  waste  pile may  be cal- 
cu la ted  by: 

St~ ~ $2 = W~" ~h = 0.2 
nh 

where  Nh is the  n u m b e r  of samples  col lected in the h th stra- 
tum. To calculate  the  uppe r  conf idence l imi t  (UCL) on the 
mean,  the degrees  of f reedom (dr) mus t  first  be ca lcula ted  us- 
ing the fo rmula  

2 Stotal 
dr= ,~ (Wh.sh)4 = 469 

h~__l t'/~ ( ' h  -- 1) 

The upper  conf idence  l imi t  on  the mean  can then be calcu-  
la ted using the specif ied a lpha  er ror  ra te  and  the degrees of 
f reedom calcula ted  using the above equat ion.  

UCLa = Xtotal + t l - a , d f ' S t o t a l  -~ 4.9 + 1.284"0.2 = 5.1 mg/L  

Conclusion 

The 90% UCL for the mean  of the TCLP da ta  is 5.1 mg/L,  
which  is grea ter  than  the regula tory  level of 5.0 mg/L.  Thus, 
mate r ia l  in the  waste  pile is de t e rmined  to be haza rdous  for 
lead based  on the es tabl i shed  decis ion rule. 

TABLE 5-1--Totals and TCLP Results--Case 5. 

TCLP Result, TCLP Result, 
Location nag / L Location mg / L 

Stratum 1 (A1): 9.2 Stratum 2 (F4): 4.8 
Stratum 1 (B3): 10.5 Stratum 2 (F7): 3.0 
Stratum 1 (C2): 9.9 Stratum 2 (GS): 4.4 
Stratum 2 (AS): 3.5 Stratum 2 (H1): 3.7 
Stratum 2 (B7): 4.2 Stratum 2 (H6): 3.1 
Stratum 2 (C5): 3.8 Stratum 2 (I9): 5.0 
Stratum 2 (D7): 3.6 Stratum 2 03): 2.8 
Stratum 2 (Eg): 2.3 Stratum 2 06): 3.4 
Stratum 2 (F2): 4.0 
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FIG. 8--Sample location map, Case 4: Systematic Grid Sam- 
pling Design (with compositing). 
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FIG. 6--Sample location map, Case 2a and 2b: Simple Ran- 
dom Design. 

FIG. 9mSample location map, Case 5: Stratified Random 
Sampling Design. 
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TABLE 1--Coefficients of  ai for  the Shapiro-Wilk Test for  Normali ty.  

i\ n 2 3 4 5 6 7 8 9 10 

1 0.7071 0.7071 0.6872 0.6646 0~431 0.6233 0.6052 0.5888 0.5739 
2 - -  0.0000 0.1677 0.2413 0.2806 0.3031 0.3164 0.3244 0.3291 
3 - -  - -  - -  0.0000 0.0875 0.1401 0.1743 0.1976 0.2141 
4 . . . . .  0.0000 0.0561 0.0947 0.1224 
5 . . . . . . .  0.0000 0.0399 

i \n  11 12 13 14 15 16 17 18 19 20 

1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734 
2 0.3315 0.3325 0.3325 0.3318 0.3306 0.3290 0.3273 0.3253 0.3232 0.3211 
3 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 0.2540 0.2553 0.2561 0.2565 
4 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 0.1988 0.2027 0.2059 0.2085 
5 0.0695 0,0922 0.1099 0.1240 0.1353 0.1447 0.1524 0,1587 0.1641 0.1686 
6 0.0000 0,0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334 
7 - -  - -  0.0000 0.0240 0.0433 0.0593 0.0725 0.0837 0.0932 0.1013 
8 . . . .  0.0000 0.0196 0.0359 0.0496 0.0612 0.0711 
9 . . . . . .  0.0000 0.0163 0.0303 0.0422 

10 . . . . . . . .  0.0000 0.0140 

i \n  21 22 23 24 25 26 27 28 29 30 

1 0.4643 0.4590 0.4542 0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 0.4254 
2 0.3185 0.3156 0.3126 0.3098 0.3069 0.3043 0.3018 0.2992 0.2968 0.2944 
3 0.2578 0.2571 0.2563 0.2554 0.2543 0.2533 0.2522 0.2510 0.2499 0.2487 
4 0.2119 0.2131 0.2139 0.2145 0.2148 0.2151 0.2152 0.2151 0.2150 0.2148 
5 0.1736 0.1764 0,1787 0.1807 0,1822 0.1836 0.1848 0.1857 0.1864 0.1870 
6 0.1399 0,1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0. t616 0 . i630 
7 0.1092 0.1150 0.1201 0.1245 0.1283 0.1316 0.1346 0.1372 0.1395 0.1415 
8 0.0804 0.0878 0.0941 0.0997 0.1046 0.1089 0.1128 0.1162 0.1192 0.1219 
9 0.0530 0.0618 0.0696 0.0764 0.0823 0.0876 0.0923 0,0965 0.1002 0.1036 

10 0.0263 0.0368 0.0459 0.0539 0.0610 0.0672 0.0728 0.0778 0.0822 0.0862 
11 0.0000 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.0598 0.0650 0.0697 
12 - -  - -  0.0000 0.0107 0.0200 0.0284 0.0358 0.0424 0.0483 0.0537 
13 . . . .  0.0000 0.0094 0.0178 0.0253 0.0320 0.0381 
14 . . . . . .  0.0000 0.0084 0.0159 0.0227 
15 . . . . . . . .  0.0000 0.0076 

i\ n 31 32 33 34 35 36 37 38 39 40 

1 0.4220 0,4188 0.4156 0,4127 0,4096 0.4068 0.4040 0.4015 0.3989 0.3964 
2 0.2921 0.2898 0.2876 0.2854 0.2834 0,2813 0.2794 0.2774 0.2755 0,2737 
3 0.2475 0.2462 0.2451 0.2439 0.2427 0.2415 0.2403 0.2391 0.2380 0.2368 
4 0,2145 0.2141 0,2137 0.2132 0.2127 0.2121 0.2116 0.2110 0.2104 0.2098 
5 0.1874 0.1878 0.1880 0.1882 0.1883 0.1883 0.1883 0.1881 0.1880 0.1878 
6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691 
7 0.1433 0.1449 0.1463 0.1475 0.1487 0.1496 0.1505 0.1513 0.1520 0.1526 
8 0.1243 0.1265 0.1284 0.1301 0.1317 0.1331 0.1344 0.1356 0.1366 0.1376 
9 0.1066 0.1093 0.1118 0.1140 0.1160 0.1179 0.1196 0.1211 0.1225 0.1237 

10 0.0899 0.0931 0.0961 0.0988 0.1013 0.1036 0.1056 0.1075 0.1092 0.1108 
11 0.0739 0.0777 0.0812 0.0844 0.0873 0,0900 0.0924 0.0947 0.0967 0.0986 
12 0.0585 0.0629 0,0669 0.0706 0.0739 0.0770 0.0798 0.0824 0.0848 0.0870 
13 0.0435 0.0485 0.0530 0.0572 0,0610 0.0645 0.0677 0.0706 0.0733 0.0759 
14 0.0289 0.0344 0.0395 0.0441 0,0484 0.0523 0,0559 0.0592 0,0622 0.0651 
15 0.0144 0.0206 0.0262 0.0314 0.0361 0.0404 0.0444 0.0481 0.0515 0.0546 
16 0.0000 0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 0.0444 
17 - -  - -  0.0000 0.0062 0.0119 0.0172 0.0220 0.0264 0.0305 0.0343 
18 . . . .  0.0000 0.0057 0.0110 0.0158 0.0203 0.0244 
19 . . . . . .  0.0000 0.0053 0.0101 0,0146 
20 . . . . . . . .  0.0000 0.0049 
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TABLE 1--(continued).  

i\ ~ 41 42 43 44 45 46 47 48 49 50 

t 0.3940 0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751 
2 0.2719 0.2701 0.2684 0.2667 0.2651 0.2635 0.2620 0.2604 0,2589 0.2574 
3 0.2357 0.2345 0.2334 0.2323 0.2313 0.2302 0.2291 0.2281 0.2271 0.2260 
4 0.2091 0.2085 0.2078 0.2072 0.2065 0.2058 0.2052 0.2045 0.2038 0.2032 
5 0.1876 0.1874 0.1871 0.1868 0.1865 0.1862 0.1859 0.1855 0.1851 0.1847 
6 0.1693 0.1694 0.1695 0.1695 0,1695 0.1695 0.1695 0.1693 0.1692 0.1691 
7 0.1531 0.1535 0.1539 0.1542 0.1545 0.1548 0.1550 0.1551 0,1553 0.1554 
8 0.1384 0.1392 0.1398 0.1405 0.1410 0.1415 0.1420 0.1423 0.1427 0.1430 
9 0.1249 0.1259 0.1269 0.1278 0.1286 0.1293 0.1300 0.1306 0.1312 0.1317 

10 0.1123 0.1136 0.1149 0.1160 0.1170 0.1180 0.1189 0.1197 0.1205 0.1212 
11 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113 
12 0.0891 0.0909 0.0927 0.0943 0.0959 0.0972 0.0986 0.0998 0.1010 0.1020 
13 0.0782 0.0804 0.0824 0.0842 0.0860 0.0876 0.0892 0.0906 0.0919 0.0932 
14 0.0677 0.0701 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0.0832 0.0846 
15 0.0575 0.0602 0.0628 0.0651 0.0673 0.0694 0.0713 0.0731 0.0748 0.0764 
16 0.0476 0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0,0648 0.0667 0.0685 
17 0.0379 0.0411 0.0442 0.0471 0.0497 0.0522 0.0546 0.0568 0.0588 0.0608 
18 0.0283 0.0318 0.0352 0.0383 0.0412 0.0439 0.0465 0.0489 0.0511 0.0532 
19 0.0188 0.0227 0.0263 0.0296 0.0328 0.0357 0.0385 0.0411 0.0436 0,0459 
20 0.0094 0.0136 0.0175 0 .02 t l  0.0245 0.0277 0.0307 0.0335 0.0361 0.0386 
21 0.0000 0.0045 0.0087 0.0126 0.0163 0.0197 0,0229 0.0259 0.0288 0,0314 
22 - -  - -  0.0000 0.0042 0.0081 0.0118 0.0153 0.0185 0.0215 0.0244 
23 . . . .  0.0000 0.0039 0.0076 0.0111 0.0143 0.0174 
24 . . . . . .  0.0000 0.0037 0.0071 0.0104 
25 . . . . . . . .  0.0000 0.0035 

Source: From Shapiro and Wflk, 1965. Used by permission. 
This table is used in Section 12.3.1 
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T A B L E  2 - - Q u a n t i l e s  o f  t h e  S h a p i r o - W i l k  W T e s t  fo r  N o r m a l i t y  
( v a l u e s  o f  W s u c h  t h a t  1 0 0 p  % of  t h e  d i s t r i b u t i o n  o f  

W is  l e s s  t h a n  Wp). 

n w0.01 w0.02 w0.0$ w0.10 w0.50 

3 0.753 0.756 0,767 0.789 0.959 
4 0,687 0,707 0.748 0.792 0,935 
5 0,686 0,715 0.762 0.806 0.927 
6 0.713 0.743 0.788 0.826 0.927 
7 0.730 0.760 0.803 0,838 0.928 
8 0,749 0,778 0,818 0.851 0.932 
9 0.764 0.791 0.829 0.859 0.935 

10 0.781 0,806 0.842 0.869 0.938 
11 0,792 0.817 0.850 0,876 0.940 
12 0.805 0,828 0.859 0,883 0,943 
13 0.814 0.837 0,866 0.889 0.945 
14 0.825 0.846 0.874 0.895 0,947 
15 0.835 0.855 0,881 0,901 0.950 
16 0.844 0.863 0.887 0.906 0.952 
17 0.851 0.869 0.892 0.910 0.954 
18 0.858 0.874 0.897 0.914 0.956 
19 0.863 0.879 0.901 0.917 0.957 
20 0.868 0.884 0.905 0.920 0.959 
21 0.873 0.888 0.908 0.923 0.960 
22 0.878 0.892 0.911 0.926 0.961 
23 0.881 0.895 0.914 0.928 0.962 
24 0.884 0.898 0.916 0.930 0.963 
25 0.886 0.901 0.918 0.931 0.964 
26 0.891 0.904 0.920 0.933 0.965 
27 0.894 0.906 0.923 0.935 0.965 
28 0.896 0.908 0.924 0.936 0.966 
29 0.898 0.910 0.926 0.937 0.966 
30 0.900 0.912 0.927 0.939 0.967 
31 0.902 0.914 0.929 0.940 0.967 
32 0.904 0.915 0.930 0.941 0.968 
33 0.906 0.917 0.931 0.942 0.968 
34 0.908 0.919 0.933 0.943 0.969 
35 0.910 0.920 0.934 0.944 0.969 
36 0.912 0.922 0.935 0.945 0.970 
37 0.914 0.924 0.936 0.946 0.970 
38 0.916 0.925 0.938 0.947 0.971 
39 0.917 0.927 0.939 0.948 0.971 
40 0.919 0.928 0.940 0.949 0.972 
41 0.920 0.929 0.941 0,950 0.972 
42 0.922 0.930 0.942 0.951 0.972 
43 0.923 0.932 0.943 0.951 0.973 
44 0.924 0.933 0.944 0.952 0.973 
45 0.926 0.934 0.945 0.953 0.973 
46 0.927 0.935 0.945 0.953 0.974 
47 0.928 0.936 0.946 0.954 0.974 
48 0.929 0.937 0.947 0.954 0.974 
49 0.929 0.937 0.947 0.955 0.974 
50 0.930 0.938 0.947 0.955 0.974 

Source: After Shapiro and Wilk, 1965. 
The null  hypothesis  of a normal  dis t r ibut ion 

level if the calculated W is less than  W~, 
This table is used  in Section 12.3.1 

is rejected at the a significance 
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TABLE 3--Quantiles of the t Distribution (values of t such that  100p% of the distribution is less than tp). 
Degrees 

of 
Freedom to.6o to.70 to.so to.9o to.95 t0.975 to.99o to.995 

1 .325 .727 1.376 3.078 6.314 12.706 31.821 63.657 
2 .289 .617 1.061 1.886 2.920 4.303 6.965 9.925 
3 .277 .584 .978 1.638 2.353 3.182 4.541 5.841 
4 .271 .569 .941 1.533 2.132 2.776 3.747 4.604 
5 .267 .559 .920 1.476 2.015 2.571 3.365 4.032 

6 .265 .553 .906 1.440 1.943 2.447 3.143 3.707 
7 .263 .549 .896 1.415 1.895 2.365 2.998 3.499 
8 .262 .546 .889 1.397 1.860 2.306 2.896 3.355 
9 .261 .543 .883 1.383 1.833 2.262 2.821 3.250 

10 .260 .542 .879 1.372 1.812 2.228 2.764 3.169 

11 .260 .540 .876 1.363 1.796 2.201 2.718 3.106 
12 .259 .539 .873 1.356 1.782 2.179 2.681 3.055 
13 .259 .538 .870 1.350 1.771 2.160 2.650 3.012 
14 .258 .537 ,868 1.345 1.761 2.145 2.624 2.977 
15 .258 .536 .866 1.341 1.753 2.131 2.602 2.947 

16 .258 .535 .865 1.337 1.746 2.120 2.583 2.921 
17 .257 .534 .863 1.333 1.740 2.110 2.567 2.898 
18 .257 .534 .862 1.330 1.734 2.101 2.552 2.878 
19 .257 .533 .861 1.328 1.729 2.093 2.539 2.861 
20 .257 .533 .860 1.325 1.725 2.086 2.528 2.845 

21 .257 .532 .859 1.323 1.721 2.080 2.518 2.831 
22 .256 .532 .858 1.321 1.717 2.074 2.508 2.819 
23 .256 .532 .858 1.319 1.714 2.069 2.500 2.807 
24 .256 .531 .857 1.318 1.711 2.064 2.492 2.797 
25 .256 .531 .856 1.316 1.708 2.060 2.485 2.787 

26 .256 .531 .856 1.315 1.706 2.056 2.479 2.779 
27 .256 .531 .855 1.314 1.703 2.052 2.473 2.771 
28 .256 .530 .855 1.313 1.701 2.048 2.467 2.763 
29 .256 .530 .854 1.311 1.699 2.045 2.462 2.756 
30 .256 .530 .854 1.310 1.697 2.042 2.457 2.750 

40 .255 .529 .851 1.303 1.684 2.021 2.423 2.704 
60 .254 .527 .848 1.296 1.671 2.000 2.390 2.660 

120 .254 .526 .845 1.289 1.658 1.980 2.358 2.617 
.253 .524 .842 1.282 1.645 1.960 2.326 2.576 

Source: From Fisher and Yates, 1974. Used by permission. 
This table is first used in Section 4.4.2 




