Confidence Intervals and

Hypothesis Tests

CONFIDENCE INTERVALS and formal hypothesis tests are two
statistical methods that can be used for decisionmaking. A
hypothesis test controls both the false positive decision er-
ror rate (o) and false negative decision error rate (8). A con-
fidence interval controls only the probability of making a
false positive decision error (a) (for example, concluding
that a site is clean when it is truly dirty). However, the prob-
ability of making a false negative decision error (8) is fixed
at 50% for confidence intervals (i.e., 8 = 0.5).

A confidence interval and a hypothesis test can be very
similar. Consider the problem of determining whether the
mean concentration (u) of a site exceeds a cleanup standard
(CS), where the contaminant is normally distributed. A con-
fidence interval could be constructed for the mean, or a t-
test could be used to test the statistical hypothesis:

Hy. > CSvs. Hy: u <CS

If the site manager’s false negative decision error rate is 0.5
(i.e., B = 0.5), these methods are the same. Additionally, with
a fixed «, the sample size of a confidence interval influences
only the width of the interval (since 8 = 0.5). Similarly, the
sample size of a t-test influences B and & (where § = upper
value of the gray region minus the lower value of the gray re-
gion). However, by solving for the sample size using a t-test,
one can substitute back into the sample size equation for a
confidence interval and compute a width corresponding to
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this sample size. Then the results of the two methods will be
identical.

Although the results of the hypothesis test and the confi-
dence interval may be identical, the hypothesis test has the
added advantage of a power curve. The power curve is de-
fined as the probability of rejecting the null hypothesis. An
ideal power curve is 1 for those values corresponding to the
alternative hypothesis (all 4 < CS in the example above) and
0 for those values corresponding to the null hypothesis (all u
> CS in the example above). The power curve is thus a way to
tell how well a given test performs and can be used to com-
pare two or more tests. Additionally, if the null hypothesis is
not rejected, the power curve gives the decisionmaker some
idea of whether or not the design could actually reject the
null hypothesis for a given level (u).

There is no corresponding idea of a power curve in terms
of confidence intervals. To derive a power curve, one would
need to translate the confidence interval into the corre-
sponding test (i.e., a t-test) and then compute the power
curve. Additionally, whereas a statistical test accounts di-
rectly for the false negative decision error, a confidence in-
terval does not (8 = 0.5). Finally, a confidence interval and a
statistical test almost always are based on distributional as-
sumptions, independence assumptions, etc. If these assump-
tions are violated, it may be easier to select an alternative test
(for example, a non-parametric test) than it is to derive an al-
ternative confidence interval. For these reasons, this docu-
ment concentrates its discussion on hypothesis testing.
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Specify Limits on Decision Errors

Optimize the Design for Obtaining Data

PURPOSE

The purpose of this step is to specify the decisionmaker’s tol-
erable limits on decision errors, which are used to establish
performance goals for the data collection design.

EXPECTED OUTPUTS

® The decisionmaker’s tolerable decision error rates based
cn a consideration of the consequences of making an in-
correct decision.

BACKGROUND
Decisionmakers are interested in knowing the true state of
some feature of the environment. Since data can only esti-

mate this state, decisions that are based on measurement

* Pages 32-36 from EPA’s QA/5-4 (Ch. 2, Ref 1).
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SPECIFY LIMITS
ON DECISION ERRORS

Burpose

To specify the decision maker's tolerable limits on
decision errors.

Ativit

« Determine the possible range of the
parameter of interest.

« Identify the decision errors and choose the
nult hypothesis.

* Specify a range of possible parameter vaiues
where the consequences of decision errors
are relatively minor (gray region).

» Assign probability values to points above and
below the action level that refiect the
tolerable probability for the occurrence
of decision errors.

data could be in error (decision error). Most of the time the
correct decision will be made; however, this chapter will fo-
cus on controlling the less likely possibility of making a deci-
sion error. The goal of the planning team is to develop a data
collection design that reduces the chance of making a deci-
sion error to a tolerable level. This step of the DQO process
will provide a mechanism for allowing the decisionmaker to
define tolerable limits on the probability of making a deci-
sion error.

There are two reasons why the decisionmaker cannot know
the true value of a population parameter (i.e., the true state
of some feature of the environment):

(1) The population of interest almost always varies over time
and space. Limited sampling will miss some features of
this natural variation because it is usually impossible or
impractical to measure every point of a population. Sam-
pling design error occurs when the sampling design is un-
able to capture the complete extent of natural variability
that exists in the true state of the environment.

(2) Analytical methods and instruments are never absolutely
perfect, hence a measurement can only estimate the true
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value of an environmental sample. Measurement error
refers to a combination of random and systematic errors
that inevitably arise during the various steps of the mea-
surement process (for example, sample collection, sample
handling, sample preparation, sample analysis, data re-
duction, and data handling).

The combination of sampling design error and measure-
ment error is called total study error, which may lead to a de-
cision error. Since it is impossible to eliminate error in mea-
surement data, basing decisions on measurement data will
lead to the possibility of making a decision error.

The probability of decision errors can be controlled by
adopting a scientific approach. In this approach, the data are
used to select between one condition of the environment (the
null hypothesis, Hy) and an alternative condition (the alterna-
tive hypothesis, H,). The null hypothesis is treated like a base-
line condition that is presumed to be true in the absence of
strong evidence to the contrary. This feature provides a way
to guard against making the decision error that the decision-
maker considers to have the more undesirable consequences.

A decision error occurs when the decisionmaker rejects the
null hypothesis when it is true, or fails to reject the null hy-
pothesis when it is false. These two types of decision errors
are classified as false positive and false negative decision er-
rors, respectively. They are described below.

False Positive Decision Error—A false positive decision er-
ror occurs when the null hypothesis (H)) is rejected when it
is true. Consider an example where the decisionmaker pre-
sumes that a certain waste is hazardous (i.e., the null hy-
pothesis or baseline condition is “the waste is hazardous”). If
the decisionmaker concludes that there is insufficient evi-
dence to classify the waste as hazardous when it truly is haz-
ardous, then the decisionmaker would make a false positive
decision error. A statistician usually refers to the false posi-
tive error as a “Type 1" error. The measure of the size of this
error is called alpha (a), the level of significance, or the size
of the critical region.

False Negative Decision Error—A false negative decision er-
ror occurs when the null hypothesis is not rejected when it is
false. In the above waste example, the false negative decision
error occurs when the decisionmaker concludes that the
waste is hazardous when it truly is not hazardous. A statisti-
cian usually refers to a false negative error as a “Type II” er-
ror. The measure of the size of this error is called beta (B),
and is also known as the complement of the power of a hy-
pothesis test.

The definition of false positive and false negative decision
errors depends on the viewpoint of the decision maker.! Con-
sider the viewpoint where a person has been presumed to be
“innocent until proven guilty” (i.e., Hy is “innocent”; H, is
“guilty”). A false positive error would be convicting an inno-
cent person; a false negative error would be not convicting
the guilty person. From the viewpoint where a person is pre-
sumed to be “guilty until proven innocent” (i.e., Hy is “guilty”;

! Note that these definitions are not the same as false positive or false
negative instrument readings, where similar terms are commonly
used by laboratory or field personnel to describe a fault in a single re-
sult; false positive and false negative decision errors are defined in the
context of hypothesis testing, where the terms are defined with re-
spect to the null hypothesis.

H_ is “innocent”), the errors are reversed. Here, the false pos-
itive error would be not convicting the guilty person, and the
false negative error would be convicting the innocent person.

While the possibility of a decision error can never be totally
eliminated, it can be controlled. To control the possibility of
making decision errors, the planning team must control total
study error. There are many ways to accomplish this, includ-
ing collecting a large number of samples (to control sampling
design error), analyzing individual samples several times, or
using more precise laboratory methods (to control measure-
ment error). Better sampling designs can also be developed to
collect data that more accurately and efficiently represent the
population of interest. Every study will use a slightly differ-
ent method of controlling decision errors, depending on
where the largest components of total study error exist in the
data set and the ease of reducing those error components. Re-
ducing the probability of making decision errors generally in-
creases costs. In many cases controlling decision error within
very small limits is unnecessary for making a decision that
satisfies the decisionmaker’s needs. For instance, if the con-
sequences of decision errors are minor, a reasonable decision
could be made based on relatively crude data (data with high
total study error). On the other hand, if the consequences of
decision errors are severe, the decisionmaker will want to
control sampling design and measurement errors within very
small limits.

To minimize unnecessary effort controlling decision er-
rors, the planning team must determine whether reducing
sampling design and measurement errors is necessary to
meet the decisionmaker’s needs. These needs are made ex-
plicit when the decision maker specifies probabilities of de-
cision errors that are tolerable. Once these tolerable limits on
decision errors are defined, then the effort necessary to ana-
lyze and reduce sampling design and measurement errors to
satisfy these limits can be determined in Step 7: Optimize the
Design for Obtaining Data. It may be necessary to iterate be-
tween these two steps before finding tolerable probabilities
of decision errors that are feasible given resource constraints.

ACTIVITIES

Determine the possible range of the parameter of interest. Es-
tablish the possible range of the parameter of interest by es-
timating its likely upper and lower bounds. This will help fo-
cus the remaining activities of this step on only the relevant
values of the parameter. For example, the range of the pa-
rameter shown in Figs. 6-1 and 6-2 at the end of this chapter
is between 50 and 200 ppm. Historical and documented ana-
lytical data are of great help in establishing the potential pa-
rameter range.

Identify the decision errors and choose the null hypothesis.
Define where each decision error occurs relative to the action
level and establish which decision error should be defined as
the null hypothesis (baseline condition). This process has
four steps:

(1) Define both types of decision errors and establish the true
state of nature for each decision ervor. Define both types of
decision errors and determine which one occurs above
and which one occurs below the action level. A decision
error occurs when the data mislead the decisionmaker
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FIG. 6.1——An example of a decision performance goal diagram baseline condition: Parameter exceeds action level.
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FIG. 6.2—An example of a decision performance goal diagram baseline condition: Parameter is less than action level.

into concluding that the parameter of interest is on one health hazard and EPA wants to take action if more than
side of the action level when the true value of the param- 5% of a population of fish have mercury levels above a
eter is on the other side of the action level. For example, risk-based action level. In this case, a decision error
consider a situation in which a study is being conducted would occur if the data lead the decisionmaker to con-

to determine if mercury contamination is creating a clude that 95% of the mercury levels found in the fish
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population were below the action level (i.e., the parame-
ter is the “95th percentile” of mercury levels in the fish
population) when the true 95th percentile of mercury lev-
els in the fish population was above the action level
(which means that more than 5% of the fish population
contain mercury levels greater than the action level). The
other decision error for this example would be that the
data lead the decisionmaker to conclude that the 95th
percentile of mercury levels in the fish population is
greater than the action level when the true 95th percentile
is less than the action level. The “true state of nature” is
the actual condition or feature of the environment that
exists, but is unknown to the decisionmaker. Each deci-
sion error consists of two parts, the true state of nature
and the conclusion that the decisionmaker draws. Using
the example above, the true state of nature for the first de-
cision error is that the 95th percentile of mercury levels in
the fish population is above the action level.

(2) Specify and evaluate the potential consequences of each de-

cision error. Specify the likely consequences of making
each decision error and evaluate their potential severity
in terms of economic and social costs, human health and
ecological effects, political and legal ramifications, and so
on. Consider the alternative actions that would be taken
under each decision error scenario, as well as secondary
effects of those actions. For example, in determining
whether or not 95% of a fish population contain mercury
levels above a risk-based action level, there may be a vari-
ety of potential consequences of committing a decision
error. In the first decision error described above, where
the decisionmaker concludes that the 95th percentile is
below when the true 95th percentile was above the action
level, the decisionmaker may decide to continue to allow
fishing in the waters and not undertake any cleanup ac-
tivity. The resulting consequences might include human
health and ecological effects from consumption of con-
taminated fish by humans and other animals, economic
and social costs of health care and family disruption, and
damaged credibility of EPA when (and if) the decision er-
ror is detected. If the other type of decision error is com-
mitted, where the decisionmaker decides that the 95th
percentile exceeds the action level when the true 95th per-
centile is below the action level, the decisionmaker might
ban all fishing in the local waters and initiate cleanup ac-
tivities. The consequences might include economic and
social costs of lost revenues and job displacement in the
fishing industry, damaged credibility for EPA when the
cleanup activities expose the nature of the decision error,
and the threat of lawsuits by fishing interests.

Evaluate the severity of potential consequences of decision
errors at different points within the domains of each type
of decision error, since the severity of consequences may
change as the parameter moves further away from the ac-
tion level. Consider whether or not the consequences
change abruptly at some value, such as a threshold health
effect level; the decisionmaker may want to change the tol-
erable limit on the decision error at such a point.

(3) Establish which decision error has more severe conse-

quences near the action level. Based on the evaluation of
potential consequences of decision errors, the decision-
maker should determine which decision error causes

greater concern when the true parameter value is near the
action level. It is important to focus on the region near the
action level because this is where the true parameter
value is most likely to be when a decision error is made
(in other words, when the true parameter is far above or
far below the action level, the data are much more likely
to indicate the correct decision). This determination typ-
ically involves value judgments about the relative severity
of different types of consequences within the context of
the problem. In the fish contamination problem above,
the decisionmaker would weigh the potential health con-
sequences from allowing people to consume contami-
nated fish versus the economic and social disruption
from banning all fishing in the community. In this case,
the decisionmaker might carefully consider how uncer-
tain or conservative the risk-based action level is.

(4) Define the null hypothesis (baseline condition) and the al-
ternative hypothesis and assign the terms “false positive”
and “false negative” to the appropriate decision error. In
problems that concern regulatory compliance, human
health, or ecological risk, the decision error that has the
most adverse potential consequences should be defined as
the null hypothesis (baseline condition).? In statistical hy-
pothesis testing, the data must conclusively demonstrate
that the null hypothesis is false. That is, the data must pro-
vide enough information to authoritatively reject the null
hypothesis (disprove the baseline condition) in favor of
the alternative. Therefore, by setting the null hypothesis
equal to the true state of nature that exists when the more
severe decision error occurs, the decisionmaker guards
against making the more severe decision error by placing
the burden of proof on demonstrating that the most ad-
verse consequences will not be likely to occur.

It should be noted that the null and alternative hypothe-
ses have been predetermined in many regulations. If not,
the planning team should define the null hypothesis
(baseline condition) to correspond to the true state of na-
ture for the more severe decision error and define the al-
ternative hypothesis to correspond to the true state of na-
ture for the less severe decision error.

Using the definitions of null and alternative hypotheses,
assign the term “false positive” to the decision error in
which the decisionmaker rejects the null hypothesis when
it is true, which corresponds to the decision error with the
more severe consequences identified in task (3). Assign
the term “false negative” to the decision error in which
the decisionmaker fails to reject the null hypothesis when
it is false, which corresponds to the decision error with
the less severe consequences identified in task (3).

2 Note that this differs somewhat from the conventional use of hy-
pothesis testing in the context of planned experiments. There, the al-
ternative hypothesis usually corresponds to what the experimenter
hopes to prove, and the null hypothesis usually corresponds to some
baseline condition that represents an “opposite” assumption. For in-
stance, the experimenter may wish to prove that a new water treat-
ment method works better than an existing accepted method. The ex-
perimenter might formulate the null hypothesis to correspond to “the
new method performs no better than the accepted method,” and
the alternative hypothesis as “the new method performs better than
the accepted method.” The burden of proof would then be on the ex-
perimental data to show that the new method performs better than
the accepted method, and that this result is not due to chance
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Specify a range of possible parameter values where the conse-
quences of decision errors are relatively minor (gray region).
The gray region is a range of possible parameter values where
the consequences of a false negative decision error are rela-
tively minor. The gray region is bounded on one side by the
action level and on the other side by that parameter value
where the consequences of making a false negative decision
error begin to be significant. Establish this boundary by eval-
uating the consequences of not rejecting the null hypothesis
when it is false. The edge of the gray region should be placed
where these consequences are severe enough to set a limit on
the magnitude of this false negative decision error. Thus, the
gray region is the area between this parameter value and the
action level.

It is necessary to specify a gray region because variability
in the population and unavoidable imprecision in the mea-
surement system combine to produce variability in the data
such that a decision may be “too close to call” when the true
parameter value is very near the action level. Thus, the gray
region (or “area of uncertainty”) establishes the minimum
distance from the action level where the decisionmaker
would like to begin to control false negative decision errors.
In statistics, the width of this interval is called the “minimum
detectable difference” and is often expressed as the Greek let-
ter delta (A). The width of the gray region is an essential part
of the calculations for determining the number of samples
needed to satisfy the DQOs, and represents one important as-
pect of the decision maker’s concern for decision errors. A
more narrow gray region implies a desire to detect conclu-
sively the condition when the true parameter value is close to
the action level (“close” relative to the variability in the data).
When the true value of the parameter falls within the gray re-
gion, the decisionmaker may face a high probability of mak-
ing a false negative decision error, since the data may not
provide conclusive evidence for rejecting the null hypothesis,
even though it is actually false (i.e., the data may be too vari-
able to allow the decisionmaker to recognize that the pre-
sumed baseline condition is, in fact, not true).

From a practical standpoint, the gray region is an area
where it will not be feasible or reasonable to control the false
negative decision error rate to low levels because of high
costs. Given the resources that would be required to reliably
detect small differences between the action level and the true
parameter value, the decisionmaker must balance the re-
sources spent on data collection with the expected conse-
quences of making that decision error. For example, when
testing whether a parameter (such as the mean concentra-
tion) exceeds the action level, if the true parameter is near the
action level (relative to the expected variability of the data),
then the imperfect data will tend to be clustered around the
action level, with some values above the action level and
some below. In this situation, the likelihood of committing a
false negative decision error will be large. To determine with
confidence whether the true value of the parameter is above
or below the action level, the decisionmaker would need to
collect a large amount of data, increase the precision of the
measurements, or both. If taken to an extreme, the cost of
collecting data can exceed the cost of making a decision er-
ror, especially where the consequences of the decision error
may be relatively minor. Therefore, the decisionmaker
should establish the gray region, or the region where it is not

critical to control the false negative decision error, by bal-
ancing the resources needed to “make a close call” versus the
consequences of making that decision error.

Assign probability limits to points above and below the gray re-
gion that reflect the tolerable probability for the occurrence of
decision errors. Assign probability values to points above and
below the gray region that reflect the decisionmaker’s tolera-
ble limits for making an incorrect decision. Select a possible
value of the parameter; then choose a probability limit based
on an evaluation of the seriousness of the potential conse-
quences of making the decision error if the true parameter
value is located at that point. At a minimum, the decision-
maker should specify a false positive decision error limit at
the action level, and a false negative decision error limit at
the other end of the gray region. For many situations, the de-
cision maker may wish to specify additional probability lim-
its at other possible parameter values. For example, consider
a hypothetical toxic substance that has a regulatory action
level of 10 ppm, and which produces threshold effects in hu-
mans exposed to mean concentrations above 100 ppm. In
this situation, the decisionmaker may wish to specify more
stringent probability limits at that threshold concentration of
100 ppm than those specified at 10 ppm. The tolerable deci-
sion error limits should decrease further away from the ac-
tion level as the consequences of decision error become more
severe.

Given the potentially high cost of controlling sampling de-
sign error and measurement error for environmental data,
Agency decision making is rarely supported by decision error
limits more stringent than 0.01 (1%) for both the false posi-
tive and false negative decision errors. This guidance recom-
mends using 0.01 as the starting point for setting decision er-
ror rates. The most frequent reasons for setting limits greater
(i.e., less stringent) than 0.01 are that the consequences of the
decision errors may not be severe enough to warrant setting
decision error rates that are this extreme. The value of 0.01
should nor be considered a prescriptive value for setting de-
cision error rates, nor should it be considered as the policy of
EPA to encourage the use of any particular decision error

TABLE 6.1—Decision Error Limits Table Corresponding to
Figure 6-1. (Action Level = 100 ppm).

Type Tolerable Probability
True Correct of of
Concentration Decision Error Incorrect Decision
<60 ppm Not exceed F(-) 5%
60 to 80 Not exceed F(-) 10%
80 to 100 Not exceed F(-) gray region
100 to 150 Does exceed F(+) 5%
>150 Does exceed F(+) 1%

TABLE 6.2—Decision Error Limits Table Corresponding to
Figure 6-2. (Action Level = 100 ppm).

Type Tolerable Probability
True Correct of of
Concentration Decision Error Incorrect Decision

<60 ppm Not exceed F(+) 5%
60 to 100 Not exceed F(+) 10%
100 to 120 Does exceed F(-) gray region
120 to 150 Does exceed F(-) 20%

>150 Does exceed F(-) 5%
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rate. Rather, it should be viewed as a starting point from
which to develop limits on decision errors that are applicable
for each study. If the decisionmaker chooses to relax the de-
cision error rates from 0.01 for false positive or false negative
decision errors, the planning team should document the rea-
soning behind setting the less stringent decision error rate
and the potential impacts on cost, resource expenditure, hu-
man health, and ecological conditions.

The combined information from the activities section of
this chapter can be graphed onto a “Decision Performance

Goal Diagram” or charted in a “Decision Error Limits
Table” (see Figs. 6-1 and 6-2 and Tables 6-1 and 6-2). Both
are useful tools for visualizing and evaluating all of the out-
puts from this step. Figure 6-1 and Table 6-1 illustrate the
case where the null hypothesis (baseline condition) is that
the parameter of interest exceeds the action level (e.g., the
waste is hazardous). Figure 6-2 and Table 6-2 illustrate the
case where the null hypothesis (baseline condition) is that
the parameter is less than the action level (e.g., the waste is
not hazardous).



Waste Pile Example

INTRODUCTION

IN THIS EXAMPLE five case studies with varying waste pile char-
acteristics and alternate sampling designs are presented
through the planning (DQO process), implementation, and as-
sessment phases. For purposes of these case studies, the stake-
holders have different prior knowledge for each case. How-
ever, for consistency and to clearly present the development of
the alternate sampling designs, each waste pile has the same
characteristics, as described in the following paragraph.

The waste pile in these examples consists of material that
has been generated from a metals recovery process. The di-
mensions of the waste pile are approximately 100 by 100 ft
(38.48 m) with a maximum height of 10 ft (3.048 m); how-
ever, more material was deposited in the front corner of the
pile (see Fig. 1—Topographic Base Map). The material in the
pile was generated from the same source and contaminated
with lead. It is also known that no containerized waste has
been disposed of in the waste pile. The waste pile is now a
Solid Waste Management Unit (SWMU) under investigation
as part of a RCRA Facility Investigation (RFI). Specific guid-
ance is provided in ASTM’s Standard Guide for Sampling
Waste Piles, D 6009. Note that the sampling design for each
case is denoted in the text of the example for clarification
purposes; the appropriate sampling design is actually se-
lected at Step Seven in the DQO process.

For Case 1 (authoritative), the stakeholders expect the lead
concentration to be extremely elevated due to process
knowledge (perhaps several times the Toxicity Characteris-
tic (TC) Rule regulatory level of 5.0 mg/L), and it is likely
that the TCLP results will designate the material as haz-
ardous. If the lead concentration in the TCLP greatly ex-
ceeds the TC Rule regulatory level, then a statistical evalu-
ation of the data would not be necessary. Thus, a complex
sampling design would probably not be warranted in this
case. In this case, the stakeholders have set a limit of $2,000
for the analytical costs of the study.

For Case 2 (simple random), preliminary data indicate that the
mean lead concentration is near the regulatory limit. The
stakeholders expect the pile to be relatively homogeneous;
therefore, information on the distribution of lead is not im-
portant. ( The entire waste pile will be considered the “reme-
diation unit” in this case. (See Identifying Inputs to Decision
section).) Although the degree of stratification is not known
(either over space or by component), it is not expected to be
significant because the recovery process that generated the
waste was reportedly constant over the time period that the
pile was generated and the particle sizes of the material in
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the pile could be considered homogeneous for the purposes
of this investigation (also known as practically homoge-
neous). The stakeholders have decided that a limit of $8,000
for the analytical costs of the study will be set in this case.

For Case 3 (systematic grid), a minimal amount of data exists
on the material in the waste pile so that no assumptions
concerning probable contaminant concentrations can be
made initially. Information regarding contaminant distri-
bution across the waste pile is a primary objective of the
study. The stakeholders have decided that a limit of $5,000
for the analytical costs of the study will be set in this case.

For Case 4 (systematic grid with compositing), a minimal
amount of data exists on the material in the waste pile so
that no assumptions concerning probable contaminant
concentrations can be made initially. Specific information
regarding distribution of contamination across the waste
pile is not an objective of the study. The degree of stratifi-
cation is not known, but it is not expected to be significant.
The stakeholders have set a limit of $2,000 for the analyti-
cal costs of the study in this case.

For Case 5 (stratified with systematic grid), it is discovered
that a recent process change was incorporated in the met-
als recovery process which significantly increased the lead
concentration in the waste. Information exists suggesting
that approximately the front 20% of the pile (note slightly
greater elevation) was generated by the new process, while
the material generated by the previous process is located in
the remainder of the pile. Although two areas of different
concentrations, or strata, exist within the waste pile, the
two individual strata are internally homogeneous. One de-
cision will be made on the entire waste pile. The stake-
holders have decided on an analytical cost limit of $5,000.

PLANNING PHASE

The DQO process and sampling design optimization process
are outlined in the Planning Step section of this manual. The
following information pertains to all five cases described in
the introduction unless otherwise stated. Figures illustrating
the location of the samples for each case are included at the
end of the example.

Data Quality Objectives (DQO) Process

Step One: Stating the Problem

The waste pile contains material that may be considered haz-
ardous due to elevated lead content. Therefore, in each case the
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FIG. 1—Topographic base map.

company needs to determine if the material should be disposed
of in a hazardous waste landfill under Subtitle C of RCRA (@
$500 per ton) versus a Subtitle D landfill (@ $50 per ton). The
stakeholders in this study are the company that generated the
waste (and will be conducting the sampling and analysis), the
appropriate regulatory agencies, and in some cases represen-
tatives from local communities. The company will be required
to develop a sampling design that meets the objectives of the
study and satisfies all pertinent regulatory requirements.

Step Two: Identifying Possible Decisions

The principal study question is: Is the material in the waste
pile a RCRA hazardous waste (per 40 CFR 261.24)? The po-
tential alternate actions are: (a) the material must be man-
aged under Subtitle C of RCRA as hazardous waste or (b) the
material may be disposed of in a permitted Subtitle D Mu-
nicipal Solid Waste Landfill (MSWLF).

Step Three: Identifying Inputs to the Decision

® The decision on whether the material is hazardous or not
will depend on the results of the Toxicity Characteristic
Leaching Procedure (TCLP) test on the samples collected.

The regulatory level for lead under the TC Rule is 5.0 mg/L.
If the sample results exceed this value, the material will be
considered hazardous. Totals results may be used to deter-
mine if the lead concentration is elevated enough—at least
20 times the regulatory level—to warrant completion of the
TCLP test. (See EPA Method 1311, Section 1.1.) Note that
the totals results may also be necessary to provide informa-
tion for a subsequent risk assessment to determine the need
to characterize soil and/or groundwater in areas adjacent to
the waste pile if it is determined to be non-hazardous, and,
in the case when the material is determined to be haz-
ardous, for characterization required for off-site disposal by
a permitted Treatment, Storage, Disposal Facility (TSDF).
For purposes of this example, only Cases 1 and 2 will in-
clude totals results; however, they may be included during
the planning step based on the objectives of the study.

In each case, the decision will be based on the entire waste
pile; in other words, there will not be smaller “remediation
units” within the pile where a Subtitle C versus D decision
will be made. Either the entire pile is hazardous, or the en-
tire pile is not. In certain situations, however, it may prove
advantageous to employ different scales of decisionmak-



ing, such as with a two-part decision rule. An example of a
two-part decision rule that could be used in this situation
would be to (1) compare the mean of the pile to a regula-
tory level and (2) make a decision on smaller remediation
units of the pile if they contained lead greater than three
standard deviations above the regulatory level.

® For Cases 1-4 the material in the waste pile was generated
by the same process, while two different processes were
used in Case 5.

® ] ead is the contaminant of concern, although the exact dis-
tribution across the pile is unknown.

® Access to the pile is not limited, and traditional sampling
equipment is expected to be adequate.

® The analytical methods for lead (SW-846 Method 6010B
for total lead and SW-846 Method 1311 for the TCLP)
should be able to meet the required detection limits as the
sample matrix is not expected to be difficult from a sample
preparation or analysis standpoint. The totals results, if be-
ing used for a subsequent risk assessment, must meet the
quantitation limits required for the assessment. Also, an
acceptable approach for addressing non-detects must be
decided upon prior to the investigation (see Data Quality
Assessment section in the Manual).

® The particle size of the material in the waste pile (approxi-
mately 0.05 cm) could be considered homogeneous for
purposes of this investigation.

® “Real-time” field analytical techniques and innovative ap-
proaches (such as XRF, field atomic adsorption or gas
chromatography, immunoassay-based test kits, direct
push technologies, etc.) could be used to improve decision-
making in the field. These techniques would be incorpo-
rated into the DQO process to provide flexibility in the field
based on the information being generated on-site. They
would also assist the investigators in determining the pres-
ence and nature of contaminant heterogeneity.

Step Four: Defining Boundaries

The waste pile will be sampled using an appropriate design
and analyzed for lead (totals and TCLP). The spatial bound-
ary of the waste pile has been defined by the obvious eleva-
tion above the surrounding terrain, the discoloration associ-
ated with the material, and the practically homogeneous
particle size of the material. The samples will be collected
from the surface to a 1-ft (0.30 m) depth, although in every
case locations should be sampled to the base of the waste pile
to obtain information about potential vertical stratification
(Case 1 illustrates this approach). Samples will be collected
within a reasonable time frame; however, a temporal bound-
ary for an inorganic contaminant such as lead is generally
not a concern.

Step Five: Developing Decision Rules

The decision rule will differ depending on the case under
consideration.

With an authoritative design (Case 1), the decision rule will

be:

If the average lead concentration for the data set, based on a
judgmental approach, greatly exceeds the regulatory level of
5.0 mg/L using the TCLP, then the material in the waste pile
will be considered hazardous, and it will be managed under
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Subtitle C of RCRA. If the average concentration is near or
below the regulatory level, a more complex sampling design
will be developed. Since an authoritative design is being con-
sidered for this investigation, a statistical test would not be
applicable and, in fact, unnecessary if the results significantly
exceed the regulatory level.

With a probabilistic design (Cases 2-5), the decision rule will
be:

If the 90% (one-tailed) upper confidence level (UCL) of the
mean concentration is equal to or exceeds the regulatory level
of 5.0 mg/L using the TCLP, then the material in the waste
pile will be considered hazardous, and it will be managed un-
der Subtitle C of RCRA. If the 90% UCL is below the regula-
tory level, the material will not be considered hazardous and
will be managed under Subtitle D for Municipal Solid Waste
Landfills. The use of the term “mean” assumes a normal dis-
tribution of the data, an assumption that must be checked. A
lognormal distribution could also be evaluated, but the UCL
would be computed differently. (See Data Quality Assess-
ment section of this example.)

Step Six: Specifying Limits on Decision Errors

The sampling design error and measurement error will be.
minimized by using a well-prepared Project Plan (QAPP).
The acceptable decision error is decidedly smaller for a Type
I error (the material is actually hazardous when the study in-
dicates it is not); therefore, the stakeholders have decided
that any outcome where the lead concentration is near or be-
low the regulatory level will result in the need for further in-
vestigation using a more complex sampling design. However,
because the risk associated with a Type II error (the material
is determined to be hazardous when it is not) from an envi-
ronmental or human health standpoint is less, a result that is
significantly above the regulatory level will result in a deci-
sion that is protective. Note that the decision error is more
important when the mean of the data set is near the regula-
tory level of 5.0 mg/L of lead.

For a study implementing a probabilistic design, limits on
decision errors will be set as follows:

In the case of making a hazardous waste determination, we
are comparing the 90% UCL of the mean concentration of the
TCLP results for the sample to the Toxicity Characteristic
(TC) Rule regulatory level of 5 mg/L. SW-846 suggests that
the decision be based on a 90% one-tailed test [1]. The Type
I error rate is set at 0.10 (10%). That is the probability of re-
jecting the null hypothesis when it is actually true. See Ap-
pendix B for additional information on hypothesis testing.

Step Seven: Optimizing Data Collection Design
Initial Design Selection
The initial design selection for the Case 1 study is:

Since available information strongly suggests that the lead
concentration in the waste pile is elevated, an authoritative
design is chosen initially for this case. However, if the sample
results reveal values close to the regulatory limits, the sample
design will need to be reconsidered in light of the new data.
Two types of authoritative designs are to be considered: bi-
ased, where the investigation targets worst case conditions,
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or judgmental, where the investigator uses professional
judgment and site information/observations to collect sam-
ples that reflect average conditions on the site. The determi-
nation of average conditions would be appropriate in this
case because the facility has conceded that the lead concen-
trations are elevated. Note that worst case conditions would
be difficult to determine in a waste unit such as this but
would be appropriate when process or site knowledge can be
used to identify areas of highest contamination. Therefore,
the specific sampling locations and the number of samples
will be determined by the investigators in the field. As a gen-
eral rule, at least four to six samples should be collected. This
number allows for one sample to be taken in each of four
quadrants and provides a minimum degree of coverage for
the pile.

The initial design selection for the Case 2 study is:

The stakeholders expect the lead concentration to be near the
regulatory limit; thus, a probabilistic approach will be cho-
sen to validate data results. Simple random, stratified, and
systematic (grid-based) designs provide information on the
mean concentration of lead. Since the existence of strata is
not expected (although could be discovered during the inves-
tigation), the stratified design is at this time eliminated from
consideration. Information on spatial distribution of lead in
the pile is not a primary objective of this study, although it
would confirm the investigators, assumptions concerning a
non-stratified contaminant distribution. A simple random
design is the simplest of the probabilistic sampling methods,
but it is not ideally suited for providing information on spa-
tial distribution. The systematic design, both without com-
positing or with compositing, provides some spatial distribu-
tion information and is typically easy to implement.
Compositing may increase precision and reduce decision er-
rors by reducing the variability of the estimated mean. The
design team will further consider all three alternatives in the
Practical Evaluation step of the optimization process.

The initial design selection for the Case 3 and Case 4 study is:

The stakeholders do not have enough information to predict
the lead concentration; thus, a probabilistic approach will be
chosen to validate data results. Simple random, stratified
random, and systematic (grid-based) designs will provide in-
formation on the mean concentration of lead. Since the exis-
tence of distinct strata is not expected, the stratified design is
at this time eliminated from consideration. The design team
will further consider the remaining alternatives in the Practi-
cal Evaluation step.

The initial design selection for the Case 5 study is:

Due to the existence of a process change that affected the
characteristics of the waste, and the expected stratification of
the waste pile, a stratified sample design is chosen.

Practical Evaluation

The practical considerations that should be reviewed for each
alternative include site access and conditions, equipment se-
lection/use, experience needed, special analytical needs, and
scheduling. The remaining alternatives do not have signifi-
cant practical considerations that would limit their potential
use for this study. However, the systematic design may result

in sampling locations that are easier to survey and locate in
the field, and it would provide better spatial coverage, if
needed. Problems with access to all sampling locations, diffi-
cult matrices (resistant to penetration by an auger, for exam-
ple, or containing large pieces of debris or material), and
sampling into native material below the pile should all be
considered during the development of the Quality Assurance
Sampling Plan. A standard operating procedures (SOP) man-
ual for conducting the field sampling will influence the col-
lection of a representative sample.

Estimating the Number of Samples Required for the
Study

The designs are evaluated for the number of samples that will
be required:

Step One: Determination of the Number of Samples

Based on the use of an authoritative approach (Case 1):

Samples will be collected within each quadrant of the waste
pile and at the center of the pile. The boring at the center will
be advanced to the base of the pile at two-foot intervals to
provide information on the vertical concentration profile.
The TCLP will be conducted on the top one-foot interval of
the boring.

Based on the use of a probabilistic approach (Cases 2 to 5):

Simple random design (Case 2):

An acceptable margin of error (A) and acceptable probability
of exceeding that error (@) must be set. Then the appropriate
number of samples to collect may be calculated by [/]:

_ (t1—a + t1-p)’s?
L

where:
n = number of samples to collect,

t;-o = percentile value for the Student t distribution for
n — 1 degrees of, freedom where a is the probability
of making a Type I error,

t—g = percentile value for the Student t distribution for
n — 1 degrees of, freedom where g is the probability
of making a Type II error,

s? = estimate of the variance (for individual samples),
and

A = RT — x (RT is the regulatory threshold, x is the esti-
mated mean).

Note that values of the Student t distribution may be ob-
tained from Table 3 in Appendix D. Because the Type II error
rate (the chance of deciding the waste is hazardous when it is
not) is set at 50% (i.e., B = 0.50), the associated ¢ value be-
comes zero and the f(;_g) term drops from the equation. The
discussion in Appendix B addresses the advantages obtained
by setting the Type II error rate at a value less than 0.50. The
resulting equation is used to calculate the number of
samples:

oy
=

In a preliminary pilot study, five samples were collected at
random. Results for TCLP were 5.8, 10.5, 4.9, 2.1, and 5.4
mg/L. The mean and standard deviation were estimated to be
5.74 and 3.03, respectively. Note that the regulatory level for



lead is 5.0 mg/L, and « was set at 0.10. Thus, the acceptable
margin of error is calculated as A = RT — x = —0.74. Using
this sample size equation and the ¢ value with n — 1 = 4 de-
grees of freedom,

1.5332.3.032

- -4
n=T5 54y W0

An iteration of the equation is then performed to stabilize the
result using n = 40 and a ¢ value for n — 1 = 39 degrees of
freedom. The final sample size is calculated as:

_ 13032303
(5 — 5.74)?

Systematic grid design (Case 3):

The minimum number of samples for a systematic grid sam-
pling design may be estimated using the same approach de-
scribed above for the Simple Random design. Such an ap-
proach should provide acceptable results if no strong cyclical
patterns, periodicities, or significant spatial correlations ex-
ist between sample locations [/].

In Case 3, a preliminary pilot study was utilized to calcu-
late the number of samples using the method described
above for Case 2. With five samples, the estimated mean and
standard deviation were 4.42 and 1.37, respectively. The “n”
necessary to achieve a 10% probability of exceeding the ab-
solute margin of error was calculated (after several iterations
to stabilize the result) to be 11 samples.

Systematic grid design with compositing (Case 4):

Compositing samples, when appropriate, reduces decision
errors and increases the precision of the estimated sample
mean by reducing variability associated with that mean. With
the assumption that the analytical variation is negligible
compared to the spatial variation, the sample variance with
compositing is equal to the variance without compositing di-
vided by the number of aliquots (k). The necessary number of
samples to achieve a desired « is inversely proportional to the
number of aliquots. The number of aliquots (k) refers to the
number of individual grab samples used to form each com-
posite. For a simple random design, the number of samples
may be calculated by:

t%—a'(sz/k)
n=

Using the same pilot study data for this case as used for Case
3 and choosing k to be 5, the number of samples necessary
with compositing would be reduced to 4. In summary, four
composite samples will be collected and each will be com-
prised of five aliquots that are distributed in four quadrants
around a center point, with the last aliquot for each sample
coming from the center point.

Stratified systematic design (Case 5):

It is known that the waste pile consists of two different types
of internally homogeneous material, so the total waste pile is
divided into L = 2 nonoverlapping strata. The number of pop-
ulation units in each of the two strata is denoted by N; and
N>, and the number of necessary samples in 4™ stratum may
be calculated by N;, = N-W,,, where W), represents the weight
or volume of material in the 4™ stratum. Since it is known
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that approximately 20% of the waste pile was generated by a
new process, W; will be set equal to 0.2 and W, will be 0.8.
Preliminary data was collected from the pile. Three samples
were collected from Strata 1, and five samples were collected
from Strata 2. The mean and standard deviation for Strata 1
was calculated to be 9.9 and 0.7, respectively. For Strata 2,
the mean and standard deviation were 3.5 and 0.7, respec-
tively. The optimum number of samples may be determined
using proportional allocation by [7]:

(t1—aas + ti-pas)’
n = Az

L
2 Wy,-s?
h=1

where
t1- = percentile value for the Student t distribution for
n — 1 degrees of freedom where « is the probability
of making a Type I error,
t1-p = percentile value for the Student t distribution for
n — 1 degrees of freedom where B is the probability
of making a Type Il error,
A = RT — x (RT is the regulatory threshold, x is the esti-
mated mean),
s? = estimate of the variance (for individual samples),
W, = weight or volume of material in the 4™ stratum,
df = the degrees of freedom connected with each ¢-
quantile.

The value of df may be calculated by:

(< <2V = WE-sh
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Using the preliminary pilot data results and the weighting
values for the two strata, df is calculated to be 2, and the cor-
responding number of samples is 30. The equations must be
solved iteratively, so the same calculations are repeated using
n = 30. After several iterations, the total number of samples
is set at 17. Using proportional allocation with n = 17 sam-
ples, 0.2:17 = 3 samples should be taken from Stratum 1,
while 0.8-17 = 14 samples should be collected from Stratum
2. The pilot study data may be used as a portion of the final
data set. Thus, no additional samples need to be collected
from Stratum 1, and nine additional samples are needed
from Stratum 2.

The mean of the data set will be evaluated using the ap-
proach in SW-846, Chapter Nine, where the upper bound of
the 90% (one-tailed) UCL of the mean is compared to the reg-
ulatory level (in this case 5.0 mg/L for lead using the TCLP).
The 90% one-tailed approach has been determined by the
EPA to provide an adequate margin of safety against making
a wrong decision.

Cost Evaluation

This section evaluates the cost associated with the alternate
sampling designs.

For Case 1 (authoritative sampling design):

A judgmental authoritative design meets the requirements
for the study; that is, it estimates the average lead concentra-
tion (via the TCLP) for the material in the waste pile. “Aver-
age” is used here rather than “mean,” which is associated
with a probabilistic design. Seven samples will be collected at
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an analytical cost of $250 per sample plus an additional 10%
for various quality assurance samples. The total analytical
cost for each remaining sampling design will be approxi-
mately $1,925, which is under the analytical budget target of
$2,000. Because a judgmental authoritative design provides
information on the average concentration of lead in the waste
pile (without the establishment of a confidence interval), it is
selected as the preferred sampling design. Note that if this
simple design did not meet the study objectives, then a mod-
ification in either the design or the study objectives would be
required.

For Case 2 (simple random sampling design):

The simple random design as well as both approaches to the
systematic design (with and without compositing) meet the
statistical requirements for the study in determining the esti-
mated mean lead concentration (via the TCLP) for the mate-
rial in the waste pile. If a simple random design or a system-
atic grid design without compositing is chosen, 30 samples
will be collected. The analytical cost per sample is $250 in-
cluding the totals and TCLP, and various quality assurance
samples would increase the cost by approximately 10%. Both
the simple random design and the systematic grid design
without compositing would generate a total analytical cost of
about $8,250 (30 samples at $250 for the totals and TCLP
plus 10% for quality assurance). The stakeholders decide on
the simple random design because they expect the waste pile
to be relatively homogeneous; therefore, information on the
distribution of lead is not important.

For Cases 3-4 (systematic grid sampling designs):

Again the simple random design and both approaches to the
systematic design (with and without compositing) meet the
statistical requirements for the study in determining the esti-
mated mean lead concentration (via the TCLP) for the mate-
rial in the waste pile. If a simple random design or a system-
atic grid design without compositing is chosen, 15 samples
will be collected, to exceed the estimated number of neces-
sary samples. The analytical cost per sample is $250 for the
TCLP, and various quality assurance samples would increase
the cost by approximately 10%. Both simple random design
and the systematic grid design without compositing would
generate a total analytical cost of about $4,125 (15 samples at
$250 each for the TCLP plus 10% for quality assurance). A
systematic grid design with compositing may improve preci-
sion over the systematic design without compositing. For
Case 3, the analytical costs of each of the alternate sample de-
signs are within the budget of $5,000. The stakeholders de-
cide to use the systematic grid design because spatial infor-
mation is desired. For Case 4, the systematic grid with
compositing is chosen to improve precision and study effi-
ciency (fewer samples collected). Four composite samples
will be collected. The cost for that design is approximately
$1,100).

For Case 5 (stratified random sampling design):

A stratified random approach is chosen due to the expected
stratification of the waste pile. This approach should im-
prove the efficiency of the final determination on the entire
waste pile. The analytical costs are estimated at $4,675 (17
samples at $250 each for the TCLP plus 10% for quality as-

surance) and are within the proposed analytical budget of
$5,000.

(What if the Alternate Designs Do Not Meet the
DQOs?)

Note that if the sampling designs do not meet the study ob-
jectives for each case, then a modification in either the design
(more samples, use of sampling tools such as compositing or
double sampling) or study objectives (change in the confi-
dence interval, study boundaries, allowable decision error, or
budget constraints) will then be required.

IMPLEMENTATION PHASE

For All Cases

Implementation of the authoritative design, simple random
design, systematic grid design, and the stratified random de-
sign should not present any significant problems. The sam-
ples will be collected using decontaminated hand augers, and
glass pans will be used for sample mixing. The samples will
be collected to a depth of 1 ft (0.61 m) at each location. Note
that for Case 1 information will be collected to evaluate the
potential presence of vertical stratification in the waste pile.
In that Case, samples for vertical profiling will be collected at
one location by a boring advanced to the base of the waste
pile. Individual samples will be collected at 2-ft (0.61 m) in-
tervals. The simple and stratified random samples may re-
quire careful surveying to determine the location of the spe-
cific sampling locations. See Figs. 5-9 at the end of this
chapter for the sample locations.

ASSESSMENT PHASE

This section illustrates some of the graphical and statistical
techniques available for completing the data quality assess-
ment (DQA) step of a data collection activity. The U.S. EPA
publication on Data Quality Assessment (QA/G-9) and the ac-
companying software (DataQUEST) may be utilized as a tool
by the investigator in this step [2,3]. Other references pro-
vided in Chapter 4 of the manual should also be consulted.
More detail is presented for Case 2 in order to illustrate a
range of graphical and statistical assessment options.

Review of the DQOs and the Sampling Design

In each case, the data collected during the study have met the
DQOs. Sampling error was minimized through the selection
and use of correctly designed sampling devises, careful im-
plementation of the field sampling and handling procedures,
and use of minimally biased subsampling procedures within
the laboratory (e.g., using guidance in ASTM D 6051) as spec-
ified in the QAPP and SOPs. The material that was sampled
does not appear to have presented any special problems con-
cerning access to sampling locations, equipment usage, par-
ticle size distribution, or matrix interferences. The analytical
package has been validated and the data generated are ac-
ceptable for their intended purpose.



FOR CASE 1—AUTHORITATIVE SAMPLING
DESIGN:

Preliminary Data Review

Results for the data collection effort are listed in Table 1-1.

Statistical Quantities:

Table 1-2 lists the totals and TCLP mean and range of values
for lead. As expected, the TCLP concentration for lead greatly
exceeds the TC Rule regulatory level of 5.0 mg/L. Totals and
TCLP results of the vertical boring indicate that there is not a
discernable difference in the lead concentration at the 1 to 3
and 3 to 5 ft intervals versus the surface interval (0 to 1 ft).
This confirms the original assumptions concerning vertical
stratification that was based on knowledge of the waste gen-
erated and the management practices of the facility.

Graphical Representation for Case 1 data:

Because of the limited amount of data collected and the au-
thoritative nature of the study design, no graphical depic-
tions were prepared.

Conclusion

Based on the established decision rule, the material in the
waste pile was determined to be hazardous for lead for Case
1. The totals results could be used for profiling the waste to

TABLE 1-1—Total and TCLP Results for Case 1.

Location C3 Cc7 E5 G3 G7
Totals result (mg/kg) 1400 975 1420 1800 1500
TCLP result (mg/L) 26 20 30 42 32

Total Results, mg/kg TCLP Results, mg/L

E5 (1-3 feet) 1600 28
ES5 (3-5 feet) 1350 32

NorTe: 1 ft = 0.3048 m.

Vertical Boring

TABLE 1-2—Totals and TCLP Statistical Results—Case 1.
TCLP Results, mg/L

Totals Results, mg/kg
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ensure compliance with the Subtitle C permit (see Identifying
Inputs to the Decision).

FOR CASE 2—SIMPLE RANDOM SAMPLING
DESIGN

FOR CASE 2 CONSIDER TWO DIFFERENT
DATA SETS, TERMED 2A (NORMAL
DISTRIBUTION) AND 2B (NON-NORMAL
DISTRIBUTION)

FOR CASE 2A (NORMAL DISTRIBUTION):

Preliminary Data Review

The results for the data collection effort are listed in Table 2a-
1. Thirty samples were collected to exceed twenty nine (the
number of samples calculated to achieve the specified mar-
gin of error). Note that the samples collected from the two
vertical cores (Locations H8 and C4) indicate that no signifi-
cant vertical stratification is present.

9

-

Average Range Average Range A 8 c D E F G H ] .]j
1419 975-1800 30 2042 FIG. 2a-1—Lead concentration distribution—Case 2a.
TABLE 2a-1—Totals and TCLP Analytical Results for Case 2a.
Location Totals Result, mg/kg TCLP Result, mg/L Location Totals Result, mg/kg TCLP Result, mg/L
A5 1574 4.34 F3 1478 5.73
A7 1047 2.95 F8 1678 5.36
Bl 405 1.58 G2 1415 6.34
B4 328 2.86 G7 452 3.05
B5 1234 5.03 G9 24 1.92
B9 661 2.65 HI1 219 2.57
Cl 1359 4,31 H3 189 0.74
D2 327 1.61 H7 358 3.57
D3 129 2.40 HS8 89 1.00
D7 924 5.29 4 1592 5.36
D9 1012 2.54 I8 2015 10.50
El 24 0.11 J2 861 6.30
E6 1310 4.89 J3 654 4.61
E7 605 6.04 J7 1014 4.70
F2 1319 3.42 J9 689 2.55
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Graphical Representation:

Figure 2a-1 shows the lead concentration isopleth based on
the data generated. Although the graphical depiction has in-
herent limitations, the distribution of lead across the waste
pile can be readily observed. No spatial trends or distinct
strata are apparent.

Statistical Evaluation of the Data

TCLP versus Totals Results

Figure 2a-2 is provided to evaluate the general relationship be-
tween the TCLP and Totals results. The data presented is pro-
vided for illustrative purposes, and conclusions should not be
drawn about any relationship between the totals and the TCLP
data for other data sets. However, the information concerning
this relationship could be useful in the future to estimate in
very general terms at what totals concentration is this waste
likely to exceed the TCLP regulatory level (approximately
=>1,600 mg/kg). Remember, use the results of this comparison
with caution, even with a similar waste stream. Note also that
in most cases the investigators would not have completed the
TCLP on samples collected at the following locations since the
Total results were below 100 mg/kg—E1, G9, and HS8.

Histogram

Figure 2a-3 is a histogram of the totals data, which provides a
picture of the shape of the data and aids in identifying the
symmetry and variability of the data set. Using a histogram,

one may visually estimate the underlying distribution using
binned data plotted against relative frequency of occurrence.
If the data are symmetric, then the structure of the histogram
will be symmetric around a central point, such as the mean, if
the data set is sufficiently large (n > 25). Thus, using a his-
togram, a normal distribution or a skewed distribution may be
visually identified. The histogram provides a tool for prelimi-
nary data assessment but is inadequate for verification of dis-
tributional assumptions. TCLP data is used to test distribu-
tional assumptions since the final decision will be made using
this data set. EPA’s QA/G-9 (Guidance for Data Quality As-
sessment) provides guidance in creating a histogram. In this
case, the histogram appears to display symmetric data [2].

Coefficient of Variation

The coefficient of variation (CV) may be used to quickly
check if the data may be modeled by the normal curve by
comparing the sample CV to 1. If the CV is greater than 1,
then the data should not be modeled by a normal curve. How-
ever, this method should not be used to conclude the oppo-
site. (If CV < 1, the test is inconclusive). The CV is computed
by dividing the standard deviation by the mean of the data
set. In this case, the CV of the TCLP data is computed to be
0.6, so the test is inconclusive.

Box and Whiskers Plot

An additional visual method of evaluating the shape of the
data is a box and whiskers plot; it is useful in determining the
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FIG. 2a-2—TCLP vs. total data—Case 2a.
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FIG. 2a-3—Histogram—Case 2a.



symmetry of the data. See QA/G-9 for guidance on construct-
ing Box and Whiskers plots. The TCLP data was used to gen-
erate the box and whiskers plot for Case 2a seen in Fig. 2a-4.

The box and whiskers plot consists of a central box, whose
length denotes the spread of the bulk of the data (the central
50%) and whiskers, whose length indicates the spreading of
the distribution tails. The width of the box is arbitrary. The
plus sign marks the sample mean, and the sample median is
displayed as a line through the box. Any outlying data points
are marked by a “*” on the plot. In Case 2 the identified “out-
lier” is the TCLP result at Location J2 (10.5 mg/L). Tech-
niques and approaches for determining when to keep or dis-
card an identified outlier are discussed in Chapter 4 of the
manual. Just because this technique identifies the data point
as an outlier does not mean that the data point should be dis-
carded. It could be an actual hot-spot within the pile rather
than an error introduced through cross contamination of the
sample or laboratory problems. If a valid reason for the “out-
lier” cannot be identified, then further investigation at this lo-
cation in the waste pile may be warranted.

If the distribution is symmetrical, the box is divided into
two equal halves; the whiskers are about the same length, and
any extreme data points are equally distributed. According to
the box and whiskers plot shown here, the data set appears to
be symmetrical with one identified outlier.

Normal Probability Plot (Quantile-Quantile Plot)

A normal probability plot, or Q-Q plot (Fig. 2a-5), may be
used to visually check if a sample data set fits a specified
probability model. The n TCLP data values, x;, are plotted
against the expected data value, y;, from the parent model
probability distribution. A normal probability plot, which
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FIG. 2a-4—Box and whiskers plot—Case 2a.
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FIG. 2a-5—Normal probability plot—Case 2a.
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may be used to test the assumption of normality, is the graph
of the quantiles of a data set against the quantiles of the nor-
mal distribution. If the data follow an approximate linear
trend on the plot, the validity of the normality assumption is
probable. Refer to EPA QA/G-9 for guidance on generating a
normal probability plot. The data set appears to be normally
distributed from the Q-Q plot in Fig. 2a-5. However, the plot
is a visual quantifier of the data and may not be used to fi-
nalize distributional assumptions.

Shapiro-Wilk Test for Normality

A more precise test for distributional assumptions is the
Shapiro-Wilk test, which is conducted on the TCLP data to
check for normality as follows:

Compute d, the denominator of the test statistic, using the
n data.

Compute k, where
k=n/2 If n is even.
k=(m-1)2 Ifnisodd.

In this case, n = 30 and k = 15. From Table 1 in Appendix D
(Table A-6 in Gilbert’s Statistical Methods for Environmental
Pollution Monitoring (1989)), the coefficients for the test may
be obtained as ay, a,, . . ., ar. [4]. Then compute the W value.

17& 2
W= g[z a; (Kpn—i+1] — x[,-])} = 0.948
i=1

If the computed W value is greater the tabled quantile at the
given alpha significance level, then the assumption of nor-
mality cannot be rejected. In this case, alpha is taken to be
0.01. Because the W value for this example is higher than the
0.01 quantile of 0.900, the assumption of normality cannot be
rejected. W values may be obtained from Table 2 in Appendix
D of this manual (also found in Gilbert, Table A-7 “Shapiro-
Wilk Tables”).

Characterization of the Distribution

The statistical analysis of the TCLP data upheld the distribu-
tional assumption of normality. Statistical quantities may
now be calculated based on the assumption of normality. The
results are displayed in Table 2a-2.

To calculate the 90% UCL when the true standard devia-
tion is not known, use the ¢ distribution from Table 3 in Ap-
pendix D. Calculate the 90% UCL by

90% UCL =x + t1—, (T};)
_ s
=X + lo.go (W)

2.1
=38+ 1311 (==
3.8 ( TO)

=43 mg/L

The tabulated “¢ value” (1.311) is based on a 90% one-tailed
confidence interval with a probability of 0.10, 5 9o (see Table
1 in Appendix D).
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TABLE 2a-2—Totals and TCLP Results—Case 2a.

Standard Coefficient of 90% UCL
Mean Range Deviation Variance Variation (one-tailed)
Totals Result, mg/kg 833 24-2015
TCLP Result, mg/L 3.8 0.1-10.5 2.1 4.6 0.6 4.3

TABLE 2b-1—Totals and TCLP Analytical Results—Case 2b.

Location Totals Result, mg/kg TCLP Result, mg/L Location Totals Result, mg/kg TCLP Result, mg/L
A5 308 1.7 F3 1283 34
A7 474 1.7 F8 320 1.7
B1 570 23 G2 869 3.2
B4 709 1.9 G7 331 3.0
B5 415 2.7 G9 540 1.6
B9 363 1.1 H1 502 1.7
C1 516 3.0 H3 1118 43
D2 72 1.2 H7 268 2.4
D3 654 2.4 H8 348 1.5
D7 643 2.0 I4 498 5.2
D9 336 1.2 I8 461 4.6
E1l 777 2.2 J2 2259 7.1
Eé6 234 1.0 J3 453 1.4
E7 334 1.5 J7 2587 6.9
F2 474 4.5 J9 283 1.9

Conclusion

The 90% UCL for the mean of the TCLP data is calculated
to be 4.3 mg/L, which is less than the regulatory level of 5.0
mg/L. Thus, in Case 2a the material in the waste pile is de-
termined not to be hazardous for lead based on the estab-
lished decision rule. Note that the TCLP result for the pilot
study (5.7 mg/L) indicated that the waste pile was haz-
ardous; however, the more comprehensive evaluation using
a simple random approach shows that the waste pile is ac-
tually non-hazardous. This illustrates the potential advan-
tage of an expanded characterization effort based on a prob-
abilistic sampling design.

A quick check may be performed to determine if an ade-
quate number of samples was collected to satisfy specified er-
ror limits. Refer to Chapter 2 of the Manual to review the
sample size equation. The standard deviation and sample
mean are entered into the sample size equation withn — 1 =
29 degrees of freedom and « = 0.10.

B_as?  1.3112:2.12
n= =

A2 (5-3.8)7

Five is less than thirty; therefore, the test was sufficiently
powerful and achieves the Type I error rate specified in the
DQOs.

FOR CASE 2B (NON-NORMAL DATA
DISTRIBUTION):
Preliminary Data Review

The results for the data collection effort are listed in Table
2b-1.

Graphical Representation:

See Fig. 2a-1 for an example of concentration isopleths based
on the data generated.

% of Observations per mg/
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FiG. 2b-1—Histogram—Case 2h.
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FIG. 2b-2—Normal probability plot—Case 2b.

Statistical Evaluation of the Data

The CV test yields a value of 0.6 for the TCLP data. The CV
value is less than 1. Thus, this method is inconclusive, and
additional statistical evaluation is needed. Figure 2b-1 is a
histogram of the totals data.

The histogram does not appear to display normally dis-
tributed data. A normal probability plot is constructed to fur-
ther test the distribution (Fig. 2b-2).



The data set does not follow a linear trend; thus, the distri-
bution may not be normal. The Shapiro-Wilk test is per-
formed to further verify the deviation from normality at a
0.01 significance level. The test estimated a W value of 0.827,
which is less than the 0.01 quantile, 0.900 (found in Appendix
D). Thus, the Shapiro-Wilk test confirms the non-normality
of the data. To check for lognormality, a lognormal probabil-
ity plot may be created (Fig. 2b-3) in which the natural loga-
rithms of the data are plotted against the calculated Y. If the
data lie linearly on the lognormal plot, the assumption of a
lognormal distribution is strengthened.

The natural logarithms of the data follow an approximately
linear trend on a logrithmic scale. Thus, the plot agrees with
the assumption of log-normality. The Shapiro-Wilk test is a
more accurate way to access lognormality by conducting the
test on the natural logrithms of the data. This method pro-
duces a W value of 0.946. Because the W value for this exam-
pleis higher than the 0.10 quantile 0f 0.939 (found in Appendix
D), the assumption of log-normality may be accepted as valid.

Characterization of the Distribution

The statistical analysis of the data indicates a log-normal
data distribution. Statistical quantities are calculated for the
TCLP data assuming a log-normal data distribution. The re-
sulting values are displayed in Table 2b-2. The 90% upper
confidence limit for the mean is then compared to the regu-
latory limit of 5.0 mg/L. Several methods exist for estimating
the mean of a log-normal distribution [4]. A simple method
for estimating the mean and variance of lognormally dis-
tributed data is illustrated below.

Compute the log-transformed data set y; = In x; where x; is
the original data set. Then compute the mean and variance of
the log-transformed data.

3=

y==2 =08
i=1

1 & -
sy = nj; (yi =97 =03
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The upper one-sided 100(1 — a)% confidence limit for the
mean of log-normally distributed data is calculated by:

_ Hi_gy
UCL_, = exp(y +0.5s7 + %)

where y and s? are the mean and the variance, respectively, of
the log-transformed data set, # is the number of samples, and
H,_, is an empirical constant that is provided in tables by
Land and Gilbert [4]. For « = 0.1, H;_, = 1.505, and the
UCLyy is calculated to be 3.1 mg/L. Note that this formula for
estimating the UCL on the mean of a lognormal distribution
can give unreliable results if # is small even when the data are
truly lognormally distributed. Refer to Singh for further in-
formation on the lognormal distribution [5].

Conclusion

The 90% UCL for the mean of a log-normal distribution was
calculated to be 3.1 mg/L, which is less than the regulatory
level of 5.0 mg/L. Thus, in Case 2b the material in the waste
pile was determined not to be hazardous for lead based on
the established decision rule.

FOR CASE 3—SYSTEMATIC GRID WITHOUT
COMPOSITING SAMPLING DESIGN:

Preliminary Data Review

Fifteen samples were collected to exceed eleven (the calcu-
lated number of samples to achieve the desired margin of er-
ror). The results for the data collection effort are listed in
Table 3-1.

Graphical Representation:

A graphical depiction of the data could be completed. (See
Case 2a for an example.)

Statistical Evaluation of the Data

A histogram is not constructed because the number of sam-
ples is too small to accurately use this quantifier (z < 25). A

25 normal probability plot is constructed to test the assumption
20 | Py
sk TABLE 3-1—Totals and TCLP Results—Case 3.
X ) TCLP Result, TCLP Result,
0t Location mg/L Location mg/L
B2 0.7 F2 3.6
05 B4 4.5 F4 5.2
Bé6 7.9 Fé 6.1
0.0 Las B8 6.0 F8 7.4
0 20 40 60 80 100 120 D2 4.1 H2 1.1
D4 2.3 H4 9.6
Y D6 5.2 H6 5.6
FIG. 2b-3—Lognormal probability plot—Case 2b. D8 92
TABLE 2b-2—Totals and TCLP Statistical Result—Case 2b.
Standard Coefficient of 90% UCL
Mean Range Deviation Variance Variation (one-tailed)
Totals Results, mg/kg 633 72-2587
TCLP Results, mg/L 2.7 1.0-7.1 1.6 2.6 0.6 3.1
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of normality (Fig. 3-1). Again, the TCLP data is used to test
for normality.

The data set appears to be normally distributed from the Q-
Q plot. The Shapiro-Wilk test is conducted on the TCLP data
to further validate the distributional assumption of normal-
ity. The W value is 0.939, which is higher than the 0.01 quan-
tile of 0.855 (found in Table 2 of Appendix D), so the as-
sumption of normality cannot be rejected.

Characterization of the Distribution

The statistical analysis of the data upheld the distributional
assumption of normality. Statistical quantities may now be
calculated based on the assumption of normality. The results
are displayed in Table 3-2.

To calculate the 90% UCL, use the t-distribution:

90% UCL for TCLP data = X + tl—a,n—l(%)

N
=63+ t0‘90,14 (W)

2.6

=63+ 1345 (7=

6.3 345( 15)
= 7.2 mg/L

The tabulated “¢ value” (1.345) is based on a 90% one-tailed
confidence interval with a probability of 0.10 and 14 degrees
of freedom, ¢ 99 14 (Table 3 in Appendix C).

Conclusion

The 90% UCL for the mean of the TCLP data is 7.2 mg/L,
which is greater than the regulatory level of 5.0 mg/L. Thus,
in Case 3 the material in the waste pile is determined to be
hazardous for lead based on the established decision rule.

A quick check is performed to determine if a sufficient
number of samples were collected to satisfy specified deci-
sion error limits on the test for whether the waste pile is haz-
ardous. The standard deviation and sample mean are entered
into the sample size equation with n — 1 = 14 degrees of free-
dom and a = 0.10. The calculated number is six samples,

which is less than fifteen, therefore a sufficient number of
samples was collected.

FOR CASE 4—SYSTEMATIC GRID WITH
COMPOSITING SAMPLING DESIGN:

Preliminary Data Review

Four samples were collected as specified by the sample size
equation. The results for the data collection effort are listed
in Table 4-1.

Statistical Evaluation of the Data

A histogram is not constructed because the number of sam-
ples is too small to accurately use this quantifier. A normal
probability plot is constructed on the TCLP data to test the
assumption of normality (Fig. 4-1).

The data set appears to be normally distributed from the
normal probability plot. The Shapiro-Wilk test is conducted
to further validate the distributional assumption. The W
value (Table 2 in Appendix D) is 0.903, which is higher than
the 0.01 quantile for the sample size of 0.707, so the assump-
tion of normality cannot be rejected. However, it should be
noted that both the Q-Q plot and the Shapiro-Wilk test have
low power to detect small deviations from normality when n
is so small.

Characterization of the Distribution

The statistical analysis of the totals data upheld the distribu-
tional assumption of normality. Statistical quantities may

TABLE 4-1—Totals and TCLP
Results for Case 4.

Location TCLP Result, mg/L
C2 4.8
C8 34
H2 4.1
H8 4.9

6
10 F 5 . .
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0 20 40 60 80 100 0 20 40 60 80 100
Y Y
FIG. 3-1—Normal probability plot. FIG. 4-1—Normal probability plot for Case 4.
TABLE 3-2—Totals and TCLP Statistical Result—Case 3.
Standard Coefficient of 90% UCL
Mean Range Deviation Variance Variation (one-tailed)
TCLP Results, mg/L 6.3 2.2-9.9 2.6 6.6 0.4 7.2
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TABLE 4-2—Totals and TCLP Statistical Results—Case 4.

Standard Coefficient of 90% UCL
Mean Range Deviation Variance Variation (one-tailed)
TCLP Results, mg/L 4.3 3.44.9 0.1 0.1 4.6

now be calculated based on the assumption of normality. The
results are displayed in Table 4-2.

Conclusion

The 90% UCL for the mean of the TCLP data is 4.6 mg/L,
which is less than the regulatory level of 5.0 mg/L. Thus, in
Case 4 the material in the waste pile is determined to be non-
hazardous for Jead based on the established decision rule.

A quick check is performed to determine if a sufficient
number of samples were collected to satisfy specified deci-
sion error limits on the test for whether the waste pile is haz-
ardous. The standard deviation and sample mean are entered
into the sample size equation withn — 1 = 3 degrees of free-
dom and @ = 0.10. The calculated number is one sample,
which is less than four, therefore a sufficient number of sam-
ples was collected.

FOR CASE 5—STRATIFIED RANDOM
SAMPLING DESIGN:

Preliminary Data Review

Three samples are collected for stratum one, and fourteen
samples are collected from Stratum 2 as calculated in the
sample size equation for proportional allocation. The results
for the data collection effort are listed in Table 5-1.

Characterization of the Distribution

Statistical quantities may now be calculated. The results are
displayed in Table 5-2.

For a stratified design which considers multiple strata, the
overall mean concentration for the waste pile, X1, may be

TABLE 5-1—Totals and TCLP Results—Case 5.

TCLP Result, TCLP Result,

Location mg/L Location mg/L
Stratum 1 (Al): 9.2 Stratum 2 (F4): 4.8
Stratum 1 (B3): 10.5 Stratum 2 (F7): 3.0
Stratum 1 (C2): 9.9 Stratum 2 (G8): 4.4
Stratum 2 (A8): 35 Stratum 2 (H1): 37
Stratum 2 (B7): 4.2 Stratum 2 (H6): 31
Stratum 2 (C5): 3.8 Stratum 2 (I9): 5.0
Stratum 2 (D7): 3.6 Stratum 2 (J3): 2.8
Stratum 2 (E9): 2.3 Stratum 2 (J6): 34
Stratum 2 (F2): 4.0

calculated using the following formula [6]:

L
Frotal = O, Wik = 0.8:3.7 + 0.2:9.9 = 4.9
h=1

where x;, is equal to the mean of the individual stratum (com-
puted as shown above for Case 2a—Simple Random), W), is
equal to the weight of the individual stratum, % is the indi-
vidual stratum, and L is the total number of strata.

The standard deviation of the overall waste pile may be cal-

culated by:
L s
- =02
Siotal ;;::1 Wh " 0

where 7, is the number of samples collected in the 4™ stra-
tum. To calculate the upper confidence limit (UCL) on the
mean, the degrees of freedom (df ) must first be calculated us-
ing the formula

_ Stzotal _
df = Wy-s) = 469

2

Eong (ny — 1)
The upper confidence limit on the mean can then be calcu-

lated using the specified alpha error rate and the degrees of
freedom calculated using the above equation.

UCL, = Xiotal + t1—adf Stotal = 4.9 + 1.284-0.2 = 5.1 mg/L

Conclusion

The 90% UCL for the mean of the TCLP data is 5.1 mg/L,
which is greater than the regulatory level of 5.0 mg/L. Thus,
material in the waste pile is determined to be hazardous for
lead based on the established decision rule.
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TABLE 1—Coefficients of a; for the Shapiro-Wilk Test for Normality.

MNL42-EB/May 2000

4

5

6

7

8

10

1 0.7071 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739
2 — 0.0000 0.1677 0.2413 0.2806 0.3031 0.3164 0.3244 0.3291
3 — — — 0.0000 0.0875 0.1401 0.1743 0.1976 0.2141
4 — — — — — 0.0000 0.0561 0.0947 0.1224
5 — — — — — — — 0.0000 0.0399
e 1 12 13 14 15 16 17 18 19 20
1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734
2 0.3315 0.3325 0.3325 0.3318 0.3306 0.3290 0.3273 0.3253 0.3232 0.3211
3 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 0.2540 0.2553 0.2561 0.2565
4 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 0.1988 0.2027 0.2059 0.2085
5 0.0695 0.0922 0.1099 0.1240 0.1353 0.1447 0.1524 0.1587 0.1641 0.1686
6 0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334
7 — — 0.0000 0.0240 0.0433 0.0593 0.0725 0.0837 0.0932 0.1013
8 — — — — 0.0000 0.0196 0.0359 0.0496 0.0612 0.0711
9 — — — — — — 0.0000 0.0163 0.0303 0.0422
10 — — — — — — — — 0.0000 0.0140
A 21 22 23 24 25 26 27 28 29 30
1 0.4643 0.4590 0.4542 0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 0.4254
2 0.3185 0.3156 0.3126 0.3098 0.3069 0.3043 0.3018 0.2992 0.2968 0.2944
3 0.2578 0.2571 0.2563 0.2554 0.2543 0.2533 0.2522 0.2510 0.2499 0.2487
4 0.2119 0.2131 0.2139 0.2145 0.2148 0.2151 0.2152 0.2151 0.2150 0.2148
5 0.1736 0.1764 0.1787 0.1807 0.1822 0.1836 0.1848 0.1857 0.1864 0.1870
6 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 0.1630
7 0.1092 0.1150 0.1201 0.1245 0.1283 0.1316 0.1346 0.1372 0.1395 0.1415
8 0.0804 0.0878 0.0941 0.0997 0.1046 0.1089 0.1128 0.1162 0.1192 0.1219
9 0.0530 0.0618 0.0696 0.0764 0.0823 0.0876 0.0923 0.0965 0.1002 0.1036
10 0.0263 0.0368 0.0459 0.0539 0.0610 0.0672 0.0728 0.0778 0.0822 0.0862
11 0.0000 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.0598 0.0650 0.0697
12 — — 0.0000 0.0107 0.0200 0.0284 0.0358 0.0424 0.0483 0.0537
13 — — — — 0.0000 0.0094 0.0178 0.0253 0.0320 0.0381
14 — — — — — — 0.0000 0.0084 0.0159 0.0227
15 — — — — — — — — 0.0000 0.0076
A 31 32 33 34 35 36 37 38 39 40
1 0.4220 0.4188 0.4156 0.4127 0.4096 0.4068 0.4040 0.4015 0.3989 0.3964
2 0.2921 0.2898 0.2876 0.2854 0.2834 0.2813 0.2794 0.2774 0.2755 0.2737
3 0.2475 0.2462 0.2451 0.2439 0.2427 0.2415 0.2403 0.2391 0.2380 0.2368
4 0.2145 0.2141 0.2137 0.2132 0.2127 0.2121 0.2116 0.2110 0.2104 0.2098
5 0.1874 0.1878 0.1380 0.1882 0.1883 0.1883 0.1883 0.1881 0.1880 0.1878
6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691
7 0.1433 0.1449 0.1463 0.1475 0.1487 0.1496 0.1505 0.1513 0.1520 0.1526
8 0.1243 0.1265 0.1284 0.1301 0.1317 0.1331 0.1344 0.1356 0.1366 0.1376
9 0.1066 0.1093 0.1118 0.1140 0.1160 0.1179 0.1196 0.1211 0.1225 0.1237
10 0.0899 0.0931 0.0961 0.0988 0.1013 0.1036 0.1056 0.1075 0.1092 0.1108
11 0.0739 0.0777 0.0812 0.0844 0.0873 0.0900 0.0924 0.0947 0.0967 0.0986
12 0.0585 0.0629 0.0669 0.0706 0.0739 0.0770 0.0798 0.0824 0.0848 0.0870
13 0.0435 0.0485 0.0530 0.0572 0.0610 0.0645 0.0677 0.0706 0.0733 0.0759
14 0.0289 0.0344 0.0395 0.0441 0.0484 0.0523 0.0559 0.0592 0.0622 0.0651
15 0.0144 0.0206 0.0262 0.0314 0.0361 0.0404 0.0444 0.0481 0.0515 0.0546
16 0.0000 0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 0.0444
17 — — 0.0000 0.0062 0.0119 0.0172 0.0220 0.0264 0.0305 0.0343
18 — — — — 0.0000 0.0057 0.0110 0.0158 0.0203 0.0244
19 — — — — — — 0.0000 0.0053 0.0101 0.0146
20 — — — — — — — — 0.0000 0.0049
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> 41 42 43 44 45 46 47 48 49 50
1 0.3940 0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751
2 0.2719 0.2701 0.2684 0.2667 0.2651 0.2635 0.2620 0.2604 0.2589 0.2574
3 0.2357 0.2345 0.2334 0.2323 0.2313 0.2302 0.2291 0.2281 0.2271 0.2260
4 0.2091 0.2085 0.2078 0.2072 0.2065 0.2058 0.2052 0.2045 0.2038 0.2032
5 0.1876 0.1874 0.1871 0.1868 0.1865 0.1862 0.1859 0.1855 0.1851 0.1847
6 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691
7 0.1531 0.1535 0.1539 0.1542 0.1545 0.1548 0.1550 0.1551 0.1553 0.1554
8 0.1384 0.1392 0.1398 0.1405 0.1410 0.1415 0.1420 0.1423 0.1427 0.1430
9 0.1249 0.1259 0.1269 0.1278 0.1286 0.1293 0.1300 0.1306 0.1312 0.1317

10 0.1123 0.1136 0.1149 0.1160 0.1170 0.1180 0.1189 0.1197 0.1205 0.1212

11 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113

12 0.0891 0.0909 0.0927 0.0943 0.0959 0.0972 0.0986 0.0998 0.1010 0.1020

13 0.0782 0.0804 0.0824 0.0842 0.0860 0.0876 0.0892 0.0906 0.0919 0.0932

14 0.0677 0.0701 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0.0832 0.0846

15 0.0575 0.0602 0.0628 0.0651 0.0673 0.0694 0.0713 0.0731 0.0748 0.0764

16 0.0476 0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685

17 0.0379 0.0411 0.0442 0.0471 0.0497 0.0522 0.0546 0.0568 0.0588 0.0608

18 0.0283 0.0318 0.0352 0.0383 0.0412 0.0439 0.0465 0.0489 0.0511 0.0532

19 0.0188 0.0227 0.0263 0.0296 0.0328 0.0357 0.0385 0.0411 0.0436 0.0459

20 0.0094 0.0136 0.0175 0.0211 0.0245 0.0277 0.0307 0.0335 0.0361 0.0386

21 0.0000 0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314

22 — —_ 0.0000 0.0042 0.0081 0.0118 0.0153 0.0185 0.0215 0.0244

23 — — — — 0.0000 0.0039 0.0076 0.0111 0.0143 0.0174

24 — — — — — — 0.0000 0.0037 0.0071 0.0104

25 — — — — _— —_ — — 0.0000 0.0035

Source: From Shapiro and Wilk, 1965. Used by permission.

This table is used in Section 12.3.1
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TABLE 2—Quantiles of the Shapiro-Wilk W Test for Normality
(values of W such that 100p % of the distribution of
W is less than W,).

n Wo.01 Wo.02 Wo.o0s Wo.10 Wo.50
3 0.753 0.756 0.767 0.789 0.959
4 0.687 0.707 0.748 0.792 0.935
5 0.686 0.715 0.762 0.806 0.927
6 0.713 0.743 0.788 0.826 0.927
7 0.730 0.760 0.803 0.838 0.928
8 0.749 0.778 0.818 0.851 0.932
9 0.764 0.791 0.829 0.859 0.935

10 0.781 0.806 0.842 0.869 0.938

11 0.792 0.817 0.850 0.876 0.940

12 0.805 0.828 0.859 0.883 0.943

13 0.814 0.837 0.866 0.889 0.945

14 0.825 0.846 0.874 0.895 0.947

15 0.835 0.855 0.881 0.901 0.950

16 0.844 0.863 0.887 0.906 0.952

17 0.851 0.869 0.892 0.910 0.954

18 0.858 0.874 0.897 0914 0.956

19 0.863 0.879 0.901 0917 0.957

20 0.868 0.884 0.905 0.920 0.959

21 0.873 0.888 0.908 0.923 0.960

22 0.878 0.892 0.911 0.926 0.961

23 0.881 0.895 0.914 0.928 0.962

24 0.884 0.898 0916 0.930 0.963

25 0.886 0.901 0918 0.931 0.964

26 0.891 0.904 0.920 0.933 0.965

27 0.894 0.906 0.923 0.935 0.965

28 0.896 0.908 0.924 0.936 0.966

29 0.898 0.910 0.926 0.937 0.966

30 0.900 0.912 0.927 0.939 0.967

3 0.902 0.914 0.929 0.940 0.967

32 0.904 0.915 0.930 0.941 0.968

33 0.906 0.917 0.931 0.942 0.968

34 0.908 0919 0.933 0.943 0.969

35 0910 0.920 0.934 0.944 0.969

36 0912 0.922 0.935 0.945 0.970

37 0.914 0.924 0.936 0.946 0.970

38 0.916 0.925 0.938 0.947 0.971

39 0917 0.927 0.939 0.948 0.971

40 0919 0.928 0.940 0.949 0.972

41 0.920 0.929 0.941 0.950 0.972

42 0.922 0.930 0.942 0.951 0.972

43 0.923 0.932 0.943 0.951 0.973

44 0.924 0.933 0.944 0.952 0.973

45 0.926 0.934 0.945 0.953 0.973

46 0927 0.935 0.945 0.953 0.974

47 0.928 0.936 0.946 0.954 0.974

48 0.929 0.937 0.947 0.954 0.974

49 0.929 0.937 0.947 0.955 0.974

50 0.930 0.938 0.947 0.955 0.974

Source: After Shapiro and Wilk, 1965.

The null hypothesis of a normal distribution is rejected at the « significance
level if the calculated W is less than W,.

This table is used in Section 12.3.1
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TABLE 3—Quantiles of the t Distribution (values of ¢ such that 100p % of the distribution is less than t,).

Degrees
of
Freedom to.60 to.70 to.s0 to.oo to.os to.97s to.990 to.995

1 325 727 1.376 3.078 6.314 12.706 31.821 63.657
2 .289 617 1.061 1.886 2.920 4,303 6.965 9.925
3 277 584 978 1.638 2.353 3.182 4.541 5.841
4 271 569 941 1.533 2.132 2.776 3.747 4.604
5 267 559 920 1.476 2.015 2.571 3.365 4.032
6 .265 553 906 1.440 1.943 2.447 3.143 3.707
7 263 .549 .896 1.415 1.895 2.365 2.998 3.499
8 .262 546 .889 1.397 1.860 2.306 2.896 3.355
9 .261 .543 .883 1.383 1.833 2.262 2.821 3.250
10 .260 542 .879 1.372 1.812 2.228 2.764 3.169
11 260 .540 .876 1.363 1.796 2.201 2,718 3.106
12 259 539 873 1.356 1.782 2,179 2.681 3.055
13 .259 .538 870 1.350 1.771 2.160 2.650 3.012
14 .258 537 .868 1.345 1.761 2.145 2.624 2977
15 258 536 .866 1.341 1.753 2.131 2.602 2.947
16 .258 535 865 1,337 1.746 2.120 2.583 2.921
17 257 534 863 1.333 1.740 2,110 2.567 2.898
18 257 534 .862 1.330 1.734 2.101 2.552 2.878
19 257 .533 .861 1.328 1.729 2.093 2,539 2.861
20 257 533 .860 1.325 1.725 2.086 2.528 2.845
21 257 532 .859 1.323 1.721 2.080 2.518 2.831
22 256 532 .858 1.321 1.717 2.074 2.508 2.819
23 .256 532 858 1.319 1.714 2.069 2,500 2.807
24 256 531 857 1.318 1.711 2.064 2.492 2.797
25 256 531 .856 1.316 1.708 2.060 2.485 2.787
26 .256 531 .856 1.315 1.706 2.056 2,479 2.779
27 256 531 .855 1.314 1.703 2.052 2.473 2.771
28 256 530 .855 1.313 1.701 2.048 2.467 2.763
29 256 530 .854 1.311 1.699 2.045 2.462 2.756
30 256 530 .854 1.310 1,697 2.042 2.457 2.750
40 255 .529 .851 1.303 1.684 2.021 2.423 2.704
60 254 527 .848 1.296 1.671 2.000 2.390 2.660
120 254 526 .845 1.289 1.658 1.980 2.358 2.617
o 253 .524 .842 1.282 1.645 1.960 2.326 2.576

Source: From Fisher and Yates, 1974. Used by permission.

This table is first used in Section 4.4.2





