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STATISTICAL ANALYSIS OF FATIGUE DATA 

By ROBERT PLUNKETT1 

It is commonly assumed in analysing 
fatigue data that there is a definite func
tional relationship between life in number 
of cycles and stress level. However, as 
has been pointed out several times 
(1, 2),2 an examination of the data shows 
considerable scatter. Even with carefully 
prepared smooth specimens, all from the 
same heat of steel, treated in the same 
manner and tested in the same labora
tory, a range of 2 to 1 in number of cycles 
for failure at the same stress level is 
normal (l) and a range of 10 to 1 is 
not unusual (2). If the specimens are 
tested by different laboratories, slightly 
varying techniques will introduce further 
scatter (3). 

For full-size factory-run items the 
scatter becomes considerably worse (3, 
p. 75; 4). In addition to the reasons for 
the scatter in laboratory specimens, there 
is the usual production tolerance in metal 
strength and the variable surface con
ditions due to production finish. This 
variation in life for a given stress makes 
a statistical analysis of the data ad
visable so that full benefit may be derived 
from expensive data. 

STATISTICAL APPROACH 

Previous work on statistical analysis 
may be divided into two approaches. 
The first is an attempt to predict the 
data from an analysis of the distribution 
of flaws in the material (S). The second 
is an analysis of the experimental data 

1 Electro-Mechanical Division, General Engineering 
Laboratory, General Electric Co., Schenectady, N. Y., 
formerly with Hughes Tool Co., Houston, Tex. 

J The boldface numbers in parentheses refer to the list 
of references appended to this paper, see p. 53. 

itself (l, 2). This report falls in the 
second category. 

The approach is based on that of 
Weibull. If we have a large number of 
similar specimens and test them in 
fatigue at the same stress level, Si, we 
will find a range of values for the number 
of cycles to failure. If P is the fraction 
of the total number of specimens that 
fail at or below a certain number of 
cycles, .V, then .V is a monotonically 
increasing function of P, N\.(P). If the 
same set of specimens had been tested at 
a different stress level, 52, there would 
be another function of P, N2(P). Ex
perience shows that for a given value of 
P, N is a monotonically decreasing func
tion of 5. If N(P) were a constant, that 
is, all specimens failed at the same 
number of cycles for a given S, then by 
definition N must be a monotonically 
decreasing function of S; actually this 
carries over to the variable case. Thus, 
N is a continuous function of S and P, 
N (S,P), with continuous derivatives. 
Since the derivatives are continuous, P 
must be a continuous function of N and 
S, P (N,S). 

It is the purpose of this report to 
give a method for plotting the curves of 
constant P in the N-S plane, that is, 
the curves P (N,S) = constant. It is 
possible to interpret these curves as the 
S-N curves for a given specimen under 
the impossible theoretical condition that 
one specimen could be tested to destruc
tion at different stress levels. This would 
be true if the S-N curves for the different 
specimens did not cross; if the scatter 
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FIG. 1.—Adjustment of Points to Nominal 
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As WeibuU has pointed out, if there 
are available sets of values of N at 
different constant S values, the analysis 
is relatively simple. However, for prac
tical reasons, this is not always possible. 
The data considered here is for 4^ 
in., 16.6 lb per ft, grade D drill pipe 
which was loaded in a rotating cantilever-
beam machine. The specimen did not 
break at the point of maximum stress, 
so that it was impossible to determine 
in advance the stress level. I t will be 
assumed that it is possible to estimate 
roughly by eye the general trend of the 
points and thus project them along lines 
of constant P to a small number of 
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FIG. 2.—Cycles to Failure of Drill Pipe. 

10^ 10" 

is caused only by different strengths of 
the metal due to heat treatment and 
stress raisers, this is undoubtedly true, 
if it is due to different chemical com
positions it may not be. In either case it 
does not affect the problem as previously 
stated. 

different values of 5'. In common with 
usual practice, it will be found easier to 
plot the experimental points either as 
S versus log N or log S versus log N. 
The procedure then is to group the points 
in bands of constant width in the 5 or 
log 5 direction, project them along ap-
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proximate lines of constant P to values 
of 5 which are the mid values or boun
dary values of the bands, and record 
these adjusted values on N. On these 
plots, the S log N or log S-log N curves 
will not deviate appreciably from straight 
lines for small changes in S. If the 
width of the band is small enough, quite 
appreciable errors in the slopes of the 
curves will have little effect on the 
adjusted values of N. Figure 1 is a 
typical example showing the adjust
ment of four such points used in the 
subsequent analysis. 

the analysis were where the short diago
nals cross the values of the selected stress 
and will be called the adjusted values of 
N. The 10, 50, and 90 per cent lines have 
been plotted as later determined from 
Fig. 3 to indicate the amount of error in 
the assumed slopes. If the error is too 
great, it may be necessary to repeat the 
analysis a second time using the more 
accurate P curves. While the log S 
- log N curves at constant P seemed to 
be straight lines in this case, this is not 
essential to the method and any smooth 
curve will do. 

10 10° 10 

FIG. 3.—Constant Probability S-N Curves for Drill Pipe. 

The four crosses are points giving 
the stress and number of cycles at failure 
for four specimens selected from Fig. 
2. The slope of the P curves was esti
mated roughly by counting off half the 
Sfjecimens in various bands of stress 
range in Fig. 2, and calling these the 
median values. It was possible in this 
case to fair in a reasonably good straight 
line through these points. The experi
mental points were then adjusted to 
previously selected stress levels by pro
jecting them as indicated by the short 
diagonal lines; the values of JV used in 

ErrECT OF FINITE SET OF POINTS 

Weibull (1) shows that if a set of n 
cards is drawn at random from a set of 
m cards which are numbered from 1 to 
m, and then the n cards are arranged 
in ascending order of their numbers, 
the mathematical expectation of the 

k 
Ath card of the set is ,—, m. This 

1 + n 
means that if we test w specimens at a 
given stress level, and arrange the values 
of N so determined in ascending order, 
the mathematical expectation of the 
value of P for the /feth value of N is 
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7—-—. There will, of course, be a certain 
1 "p ft 

amount of scatter in these values, with 
the scatter decreasing as n increases. 

What was done in this case was to 
plot, on probability paper, the adjusted 

k 
values of log N versus —;—: for each 

n + I 
band of log S. It was not expected nor 
necessary that these would be normally 
distributed and thus show a straight line 
on probability paper, but since the scat
ter is due to a large number of different 
causes, the central limit theorem (6) 
indicates that the curve will be approxi
mately a straight line for values of P 
which are not near either 0 or 1. 

was made that the distribution of P 
and N for the interrupted tests in a given 
stress band was the same as that for 
those which failed at higher values of N. 
This is based on the doctrine of equal 
probabilities, which is admittedly dan
gerous, but used in default of anything 
better. If yVi is the value of N at which 
a test was discontinued, this would be 
equivalent to weighting the remaining 
points in the ratio of the total number 
of points remaining above ^1 plus the 
dropped one, to the number of points 
remaining. Thus, if there were 20 points 
originally arranged in ascending order 
of JV, and the sixth one were discon
tinued, each of the first 5 would have 
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FIG. 4.—Deviation of Breaking Stress from Maximum Stress (cantilever beam testing). 

INTERRUPTED TESTS TABLE I.—SPECIMENS TESTED. 

These particular data are further Group 
complicated by the fact that some of the 
tests were interrupted before failure 1 
took place. This was caused by the fact 3 
that both the pipe and the tool joint were * 
being tested, and when either one failed ^ 
the test was perforce halted. If these s.'...'..-
values were ignored, it is clear that the 
data would be biased in favor of the 
lower'strength values. The assumption 

In 10-' S 

0.85 to 0.95 
0.95 to 1.05 
1.05 to 1.10 
1.10 to 1.15 
1.15 to 1.20 
1.20 to 1.25 
1.25 to 1.30 
1.30 to 1.45 

Refer
ence 

In 10-< S 

0.90 
1.00 
1.10 
1.10 
1.20 
1.20 
1.30 
1.30 

Tota l 
Points 

11 
17 
27 
38 
33 
23 
19 
18 

186 

In-

plete 

1 
5 
4 

10 
8 

13 
11 
9 

61 

Failed 

10 
12 
23 
28 
25 
10 
8 
9 

125 
61 



PLtJNKETT ON FATIGUE DATA 49 

weight 1 and each of the last 14 would 
have weight i f ; it should be noted that 
the sum of the weights is still 20. I t 
may be assumed that the value of P 
to be used is the average value for the 
weighted points, since any other reason-
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Group 6 

m = total number of completed 
tests, and 

n = total number of tests both 
completed and incomplete. 

This is complicated still further by the 
fact that failure does not occur a t the 

Group 5 

J 

/ 

/ 

/ 
: 

/ 

• 

/ 
/ 

f 

/ 
f 

10* 2x10* 5x10* 

T 

10° 2xK)* 10' 2x10' 5x10' 10° 2x10" 

Number of Cycles to Failure, log scale 

FIG. S.—Sample P-ln iV Plot. 

able assumption would make little differ
ence in P ; that is, if Wi is the weight of 
the tth point. 

E •W; + 
+ 1 

B.{P^) = 

, • » • . 

where: 

E (Pk) 

2_i W'i = n 

mathematical expectation of 
the ^th point, 

maximum stress in the pipe, whereas the 
maximum stress is the only one available 
for the incomplete test. Figure 4 is a 
plot of the ratio of the actual breaking 
stress to the maximum stress for those 
specimens which did break; it shows the 
percentage of those specimens which 
had less than a given ratio and indicates 
that small error is introduced by using 
the maximum stress. The error in IV 
is that which is caused by decreasing 
the stress by the given percentage and 
can be seen from Fig. 1 to be small; 
this is further helped by the fact that 
the P values of the points are little 
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affected by tests which were abandoned 
at values of N just less than those of 
the given specimen. 

METHOD OF PLOTTING DATA 

First all the points were plotted on a 
log S - log A'̂  graph, Fig. 2; the crosses 
are the completed tests, and the circles 
are the values of N at which tests were 
abandoned. Log S ŵ as used, as a pre
liminary study indicated that this would 
give almost straight lines for P = con
stant for the range of interest. The set 
of data was broken up into eight groups 
of points, those falling in the bands of 
log 5 shown in Table I. It would prob
ably have been better to use a middle 
value of S for reference in all groups; 
then the errors for those greater than 
the reference value would balance the 
errors for those less, see Fig. 1. The values 
for £(Pk) were calculated as indicated 
previously (see Appendix). Then the 
values of log Â ^ versus E(Pk) were 
plotted on probability paper (Fig. 5). 
It can be seen that regardless of the 
shape of the curve, the P = 0.50 points 
may be determined very accurately. 
Because of the large number of dis
continued tests, many of the P = 0.90 
points are not reached, but the P = 
0.10 points may be found with a little 
more uncertainty than the median 
points. For reasons that will be shown 
later, it is felt that straight lines give the 
best approximation to the curves be
tween P = 0.10 and P = 0.80. Thus, an 
extrapolation to P = 0,90 will not be 
far in error. The values of the 0.10, 0.50, 
and 0.90 points were plotted in Fig. 3, 
after being adjusted to the mid points 
of the group for each band, with the 
exception of group 1 where they were 
plotted on the In 10-^5 = 1.325 line. 
It can be seen that straight lines can be 
drawn through each set of points and 
that they are almost parallel; one such 

set of data is insufficient to say that they 
do not meet at a point at S equal to the 
ultimate load, as has been suggested by 
Almen (3, p. 66), but it is not readily 
apparent that they must. 

A further check on the shape of the 
curve was made by plotting all the points 
on one consolidated graph. Since the 
P lines seem to be parallel, it is unneces
sary to adjust the width of the curves 
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FIG. 6.—Consolidated P-ln N Plot, Eight 
Groups. All groups displaced sideways so that 
F = 0.50 points coincide. 

for log X. The eight curves for the 
different bands were shifted sideways 
enough to make all the P = 0.50 points 
fall on the same ordinate and then all 
the points were picked off on Fig. 6. 
It can be seen that the points fit a 
straight line very nicely. The amount 
of scatter is misleading, since if the points 
were formed into one sequence there can 
be only one value of Â  for each value of 
P and the points must lie on a fairly 
smooth curve, at least in the middle of 
the range. The only purpose of Fig. 6 
then, is to show that a straight line of a 
given slope will fit all groups fairly well. 
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FIG. 7.—Consolidated P-ln N Plot, Replotted 
from Fig. 6 in One Sequence. 

the last 15 points Wfefe plotted on Fig. 
7, with about evfiry tenth point plotted 
in the middle of the range. The last three 
discarded points are also indicated. There 
seems to be a possibility that the lower 
end of the scale cuts off, that is, there is 
a definite curve for P = 0, no specimen 
will fail below this number of cycles for 
each stress level. The upper end of the 
curve shows more scatter and is less 
accurate because of the weighting proc
ess, but there seems to be a definite 
indication of curving over to the right 
as indicated by the dash line. There is 
undoubtedly a definite P = 1.00 curve, 
but it may well coincide with the S-N 
curve for small polished specimens which 
is well out of the range shown. The small 
amount of scatter in the middle range of 
Fig. 7, is also of interest. 
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FIG. 8.—Constant Probability S-N Curves for Rear Axle Pinions (after Almen). 

The points in Fig. 6 were arranged in T E S T ON ALMEN'S DATA 

one sequence to include the discarded To test the method further, it was 
points and the percentages for the whole used on the data from rear axle pinions 
group figured as before. The first 8 and shown in Fig. 28 of Almen's paper (3), 
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The points were divided into eight 
groups centered at 9.5, 10.5, 11.5, 12.5, 
13.5, 14.5, 15.5 and 18.5 on his stress 
level scale. These were plotted on proba
bility paper and the 10, 50 and 90 per 
cent points replotted on the original 
chart. Fig. 8. I t will be seen that straight 
lines, slightly converging, fit all points 
fairly well except at the 9.5 level. This 
last indicated that some 15 points were 
missing from the original plot. 

It is interesting to note that if the 
P lines do converge, it is at a point con
siderably above the ultimate strength 
of the steel. 

CONCLUSIONS 

As a result of this analysis several 
conclusions may be reached: 

1. Figure 3 gives, with considerable 
accuracy, the number of cycles at which 
10, 50, and 90 per cent of the mill run 
of 4J in., 16.6 lb per ft, grade D drill 
pipe may be expected to fail. Very few, 
if any, will fail below the line marked 
P = 0. 

2. A very small fraction of the tests 
may be expected to show extremely large 
values of N at failure for a given stress— 
beyond the line marked P = 0.99. 

3. Practically no pipe will last in
definitely at stresses above 22,000 psi. 
If there is an endurance limit it is below 
this value, but the data are insufficient 
to show it. 

4. The stress range ratio at 5 X 10 ,̂ 
cycles for 90 per cent of the specimen, 
from P = 0 to P = 0.9, is about 2\, the 
range from P = 0.5 to P = 0.9 is a little 
less than half of this. The median stress 
at 10« cycles is about 25,000 psi, the 90 
per cent stress at 10* cycles is about 
33,000 psi. 

5. If it is desired to design a tool 
joint such that 99 per cent of the failures 
will occur in the body of the pipe, a 
safe method would be to make sure 
that the P = 0 line for the tool joint 

approximated the P = 0.9 curve for 
the drill pipe, then the P = 0.1 curve 
for the tool joint would be far enough 
out that less than 1 per cent of the 
failures would occur in the tool ioint. 

The exact equation is 

= / (1 - P^'og N)) ^ , „ rf(log N) 
g - o d log N 

where: 
P (log N) = P as a function of log N 

for a given stress, 
Q = similar function for the tool 

joint, and 
F = fraction of failures in the 

tool joint. 
On integrating by parts it is easily^ seen 
that, also: 

/ 0_o d \ogN 

An upper limit is easily found since 

r^-' dF , , r 
JQ., <* log AT J 

= Q{N,){P{N^) - P{N,)) = QiN^Kl - P{N{)} 

where: 
Q{Xi) = the value of Q where P = 1 

and 
P(.Yi) = the value of P where Q = 0. 
For example, if Q(Ni) = 0.1, P(iVi) = 
0.9 then: 

F < 0.1 (1 - 0.9) = 0.01 

Less than 1 per cent will fail in the tool 
joint. 

This inequality is equivalent to saying 
that if 0.9 of the pipe specimens have 
broken before any of the joints have 
broken (.Yi cycles), and 0.1 of the joints 
would have broken by the number of 
cycles (-Y2) at which all of the pipe would 
have broken, each being tested inde
pendently, then the worst possible situa
tion is where the additional 0.1 of the 
pipe specimens do not fail until N2 
cycles. In the combination of the two, 
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only 0.1 of the total number is lelt by 
Ni cycles due to failure in the pipe. Of 
this 0.1, 0.1 will fail in the joint by Ni 
cycles at which time all the remaining 
specimens will fail in the pipe. Thus 
under this worst condition 0.1 X 0.1 
will fail in the tool joint or 0.01 all told. 
Thus 0.90 will fail in the pipe by Ni 
cycles, 0.01 in the joint between .Vi and 
Ni and 0.09 in the pipe at .V2, a total 
of 1.00 in all. The actual number of 
failures in the joint must be less than this 

since the pipe specimens continue to 
fail between Â î and A'̂2 cycles. 

A cknowledgment: 
I should like to thank F. C. Scott, 

Head of Research Engineering, Hughes 
Tool Co., for permission to publish this 
paper and to use the data accumulated 
by his laboratory over a period of some 
twenty years. The stimulating discus
sion of this problem with H. B. Woods 
of the same department has been most 
helpful. 

REFERENCES 

(1) W. Weibull, "Statistical Representation of (4) 
Fatigue Failures in Solids," Kungl Tekn. 
Hogsk. Hand., No. 27, Stockholm (1949). 

(2) R. E. Peterson, "Approximate Statistical 
Method for Fatigue Data," ASTM BULLE- (5) 
Tnsr, No. 156, p. 50, January, 1949. 

(3) J. O. Almen, "Fatigue of Metals as Influ
enced by Design and Internal Stresses," (6) 
Symposium on Surface Stressing of Metals. 
Am, Soc. Metals, p. 68, February, 1946. 

W. S. Bachman, "Fatigue Testing and De
velopment of Drill Pipe-to-Tool Joint Con
nections," World Oil, Vol. 132, p. 104, Janu
ary, 1951. 
A. M. Freudenthal, "Statistical Aspect of 
the Fatigue of Materials," Proceedings, 
Royal Soc. (A), Vol. 187, pp. 416-429 (1946). 
H. Cramer, "Mathematical Methods of Sta
tistics," Princeton University Press, p. 213 
(1946). 



54 SYMPOSIUM ON STATISTICAL ASPECTS or FATIGUE 

APPENDIX 

SAMPLE CALCULATIONS 

V* , Wk + 1 
i ^ a - i + — r — 

P(N,) = -^ - — ^ 
n + 1 

/ .Wi = n (sum of all weighted values) 

* jk + ntk 
Wi = 11 : 

jk = total number left 
Wk = number dropped between ^ — 1 and k 

EXAMPLE {Group 3): • 

i = 17 j \ = 8 (total left) 
>Mi = 1 (dropped between i = 16 and 

i = 17) 

ji + nii 8 + 1 
= 1.125 

P(,N) 

Ji 8 

Wi = 1.125 X 1.111 = 1.250 

^Wi = 17.002 + 1.250 = 18.252 

E , wn + 1 

» + 1 

17.002 + 
1.250 + 1 

1 
2 

3 
4 
5 
6 

' 7 
8 
9 

10 

11 
12 
13 
14 
15 
16 

17 
18 
19 

20 
21 
22 
23 

GROUP 3, » = 27 

Number 
Dropped 

• + *"» 

.042 

.067 

125 

.250 

Wi 

1.000 
1.000 

1.042 
1.042 
1.042 
1.042 
1.042 
1.042 
1.042 
1.042 

1.111 
1.111 
1.111 
1.111 
1.111 
1.111 

1.250 
1.250 
1.250 

1.563 
1.563 
1.563 
1.563 

Xwi 

1.000 
2.000 

3.042 
4.084 
5.126 
6.168 
7.210 
8.252 
9.294 

10.336 

11.447 
12.558 
13.669 
14.780 
15.891 
17.002 

18.252 
19.502 
20.752 

22.315 
23.878 
25.441 
27.004 

Pi 

3.6 
7.1 

10.8 
14.5 
18.2 
21.9 
25.6 
29.4 
33.1 
36.8 

64.8 
69. 
73. 

78. 
84. 
89. 
95, 

2 3 + 4 27 1 

27 + 1 
= 64.8 



DISCUSSION 

MR. J. 0. ALMEN.'—Mr. Plunkett 
has shown an S-N diagram of a large 
number of automobile spiral bevel gears 
tested to failure in complete rear axle 
assemblies. It is seen that the stress 
scale in this chart is given as a "load fac
tor" which is a necessary deviation from 
conventional fatigue diagrams because 
the stresses in conventional units are 
not known. 

In early plots of the same data^ the 
stress scale was arbitrarily shown as 
pounds per square inch for the purpose 
of simplifying the job of selling the result
ing empirical gear strength formula to 
potential users. After the gear strength 
formula had been universally accepted 
the diagrams were altered to express 
stress as proportional to the applied 
load but not in terms of pounds per 
square inch. 

There has been considerable misunder
standing about these tests which, in view 
of their present use by Mr. Plunkett, 
seems to call for clarification. 

The laboratory tests were devised to 
conform to the failure of gears in actual 
owner service. The laboratory test loads 
were selected to produce fractures of 
gear teeth that duplicated the fractures 
that occurred in owner service in regard 
to character and location of fractures. 
This required testing the gears by apply
ing to each propeller shaft a torque 
equal to the maximum torque delivered 

•by its engine divided by the low gear 
1 Research Consultant, Research Laboratories Div., 

General Motors Corp., Detroit, Mich. 
2 J o . Almen and A. L. Boegehold, "Rear Axle Gears: 

Factors Which Influence Their Life," Proceedings, Am. 
Soc. Testing Mats., Vol. 35, Part II, p. 99 (1935). 

ratio of a conventional three speed trans
mission. No reduction was made to allow 
for friction losses in the transmission. 

Since the great majority of service 
fractures occurred in automobiles that 
had been subjected to abusive driving 
on steep hills, in deep mud, and with 
"grabbing" clutches, etc., it will be ap
preciated that the plotted data were only 
remotely related to normal fatigue ex
pectations of automobiles used by normal 
drivers of the period (15 to 20 yr ago) 
when the tests were made. This relation
ship is even more remote today because 
better roads have replaced steep hills 
and mud and the old style friction 
clutches have been largely replaced by 
hydraulic clutches. By these improve
ments the abusive driver is protected 
against himself. 

Mr. Plunkett has made proper use of 
the spiral bevel gear fatigue data in so far 
as they relate to fatigue tests under con
trolled loads, but it is not possible to 
establish permissible service loads for use 
in gear design from statistical analysis of 
these data. 

After 20 yr experience in many miUions 
of automobiles with gears designed by 
the empirical formula that was developed 
from the data shown in Mr. Plunkett's 
paper we can only say that our original 
estimate of adequate automobile rear 
axle gear strength has been fully justified. 
That estimate is represented by a line 
approximately bisecting the scatter band 
shown in Mr. Plunkett's paper. 

MR. W . WEIBULL' {by letter).—The 
' Scientific Director, Bofors Co., Bofors Sweden. 
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adjustment process shown in this article 
seems sound and successful. In principle, 
the weighting process is a proper method 
for dealing with the interrupted tests. 
For reasons stated below, I am proposing 
some small modifications. In addition to 
this approach, it would be possible, I 
think, to analyze the combined distribu
tion of the pipes and the tool joints into 
separate distributions if the tool joints 
all belonged to the same family.* If the 
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FIG. 9.—Most Probable Life of Incomplete Test. 

distribution function of the first one is 
Pi and of the second one is P2, the com
bined distribution function is found from: 

(1 - P) = (1 - P . ) ( l - P 2 ) 

In some cases it is possible to separate 
Pi and Pi.^ 

METHODS OE DEALING WITH 

INTERRUPTED FATIGUE 

TESTS 

Method 1: 

Let us first suppose that we have only 
one incomplete test, interrupted after 
Ni stress cycles and (« — 1) complete 
tests. If the cumulative distribution 
function (cdf) P = F(N) is known, the 
probability P i corresponding to the life 
A''i is easily determined (see Fig. 9). 

Putting 

P = Pi + 
1 - P i 1 + P i 

* Does not obtain in tliis case.—AUTHOR. 
' W. WeibuU, "The Phenomenon of Rupture in Solids," 

Ing. Vetenslcaps Akad., Hand. No. 153, pp. 32 and 48, 
Stockholm (1939). 

The corresponding value N(P) may be 
said to be the most probable life of the 
incompletely tested specimen, as there 
will be 50 chances ia 100 of its being 
greater, and just as many of its being 
smaller than N. 

Accordingly, if we arrange the n points, 
including iVi, in ascending order of N, 
and Ni is the ^-th point of this array, 
the most probable order number of this 
specimen will not be k, but 

ORIGINAL ORDER NUMBERS 
N, 

4 5 6 
-» K O-

7 e 
-K )(-

9 10 II -
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ESTIMATED ORDER NUMBERS 
FIG. 10.—Estimated Order Numbers Method. 

T A B L E II.—COMPARISON OF THREE METHODS. 

Order Number of 
Complete Tests 

1 
2 
J 
4 
5 

6 
7 
8 
9 

10 

Method 1 

1 
2 
3 
4 
5 

6 
7 
8.5 

10 
11 

Method 2 

1 
2 
3 
4 
5 

6.2 
7.4 
8.6 
9.8 

11.0 

Method 3 

1 
2 
3 
4 
5 

6.17 
7.33 
8.50 
9.67 

10.83 

K + 
n — k n -\- k 

Figure 10 shows a sample calculation 
using Group 1, where n = 11-and ^ = 6. 
The order number 6 has to be raised to 
6 + (11 — 6) = 8.5 and the intermediate 
order numbers have to be reduced by one 
point. 

The probable life of the interrupted 
test is thus equal to the orignal N^ 
(see Table I I ) . 

If there is more than one interrupted 
test, the above-mentioned rule may still 
be applied. The incomplete N values 
have to be counted after their positions 
have been altered. For this reason, we 
have to start with the highest incomplete 
value, then take the next highest, etc. 
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The estimated life of an interrupted 
test is evidently rather uncertain. Thus, 
it seems better to drop these values when 
plotting the data. They have, neverthe
less, been tiseful, as they have improved 
the estimates of the other P-values. 
There is, of course, no necessity to plot 
all the points of the array. In the case 
of grouped data, for instance, it is usual 
to plot the class limits only, leaving most 
of the observations unplotted. 

Method 2 (Flunkett): 

The preceding method may be modi
fied as follows. Returning to Group 1, it 

CORRECTED NUMBERS 
ACC. TO METHODS 
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PROBABILITY 

-Comparison of Three Methods. 

may be said that it is very probable that 
the incompletely tested specimen will 
have a life greater than A"? and smaller 
than ^''u (original order number), but it 
has just the same chance of being greater 
as of being smaller than Ng. Thus, the 
uncertainty is greater in the middle of 
the array above iVi and smaller at its 
boundaries. This uncertainty may be 
equalized by the weighting process of 
Plunkett. Instead of giving the incom
plete test the order number 8.5, we may 
distribute the unity over the total num
ber left, increasing each one by 0.2 and 
thus having the values of Table II. 

The difference between Method 1 and 
2 may be illustrated by Fig. 11, where 
the step curves give the probabilities of 

the original order numbers. For instance, 
as there is 1 chance in 6 that Â î falls 
below iVe, there is also 1 chance in 6 
that the original order number 6 in real
ity may be 7, and 5 chances in 6 that it 
may be 6. Method 1 gives accordingly 
(on the average) the correct value in 5 
cases in 6, whereas it gives an error of 1, 
in 1 case out of 6. Method 2 gives an 
error of -|-0.2 in 5 cases in 6 and an error 
of —0.8 in 1 case in 6 For the original 
order number 7, Method 1 gives 4 
chances in 6 of this number being the 
correct one and 2.chances in 6 that the 
error is —1, whereas Method 2 gives the 
same probabilities for the errors -|-0.4 
—0.6, respectively, etc. 

Method 3: 

This method is a slight modification 
of Method 2. It seems better to divide 
the weight into 6 parts, giving each of 
the complete tests an extra weight of 
1/6 only (instead of 1/5). The difference 
between Methods 2 and 3 may be prac
tically insignificant, but the latter 
method presents a more sjmimetrical 
solution. The fact that the last order 
number deviates from the total number 
of tests, n, is quite all right, as it reflects 
the possibility of iVi in some cases (1/6) 
being greater than the greatest value of 
the complete tests. 

The values of Wi may be regarded as 
the corrected order numbers. For this 
reason it seems better to calculate the 
P-values according to the formula 

E{P) = Wil{n 4- 1) 

There is no reason, as far as I can see, to 

introduce the average (w* + 1) The 

advantage of the above-mentioned ex
pression for £(P) lies in the fact that it 
holds good even if rrik = 0. 

MR. ROBERT PLUNKETT (author's clo
sure).—Mr. WeibuU's method for calcu-
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lating the P values is the theoretically 
correct one according to the assumptions 
of the paper. The only reason for using 
{Wk + l)/2 was to make the revised order 
numbers give better P values and is in
correct for his method. Using this, how
ever, there is negligible difference be
tween his P values and mine, even for the esting. 

last complete test (99.1 versus 98.5). This 
procedure was also communicated to the 
author by L. G. Johnson, Research 
Laboratories Division, General Motors 
Corp. 

Mr. Almen's clarifying remarks on the 
origin of his data should prove inter-




