FRACTURE and FATIGUE CONTROL in STRUCTURES

Applications of Fracture Mechanics

THIRD EDITION

John M. Barsom Stanley T. Rolfe

Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics

Third Edition

John M. Barsom Stanley T. Rolfe

ASTM Stock Number: MNL41

ASTM 100 Barr Harbor Drive West Conshohocken, PA 19428-2959

Printed in the U.S.A.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book. For information, please contact: Manager of Special Sales Butterworth-Heinemann 225 Wildwood Avenue Woburn, MA 01801-2041 Tel: 781-904-2500 Fax: 781-904-2620

For information on all Butterworth-Heinemann publications available, contact our World Wide Web home page at: http://www.bh.com

Originally published in the U.S.A. by ASTM

Library of Congress Cataloging-in-Publication Data

Barsom, John M., 1938—
Fracture and fatigue control in structures: applications of fracture mechanics / John M. Barsom, Stanley T. Rolfe.—3rd ed.
p. cm.—(ASTM manual series: MNL 41)
ASTM stock number: MNL41
Includes bibliographical references and index.
ISBN 0-8031-2082-6
1. Fracture mechanics. 2. Metals—Fatigue. 3. Fracture mechanics— Case Studies.
I. Title. II. Rolfe, S. T. (Stanley Theodore), 1934—
TA409.B37 1999

1A409.B37 1999 620.1′126 21—dc21

99-045439

Copyright © 1999 AMERICAN SOCIETY FOR TESTING AND MATERIALS, West Conshohocken, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

Photocopy Rights

Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by the American Society for Testing and Materials (ASTM) provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923; Tel: 508-750-8400; online: http://www.copyright.com/.

NOTE: This publication does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this publication to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

> Printed in Philadelphia, PA November 1999

Contents

Foreword	xv
Preface	xvii

PART I: INTRODUCTION TO FRACTURE MECHANICS

Chap	ter 1	
Overview of	the Problem of Fracture and Fatigue in Structures	3
1.1	Historical Background	3
1.2	Ductile vs. Brittle Behavior	9
1.3	Notch Toughness	10
1.4	Introduction to Fracture Mechanics	14
	1.4.1 Driving Force, K ₁	14
	1.4.2 Resistance Force, $K_{\rm c}$	15
1.5	Fracture Mechanics Design	16
1.6	Fatigue and Stress-Corrosion Crack Growth	19
1.7	Fracture and Fatigue Control	23
1.8	Fracture Criteria	24
1.9	Fitness for Service	25
1.10	Case Studies	26
1.11	References	26
Chap Stross Analysi	ter 2 sie for Members with Cracks—K	28
Otress Anarys	In the duration	20
2.1	Introduction	28
2.2	Stress-Concentration Factor— κ_t	29
2.3	Stress-Intensity Factor— K_{I}	3U 2E
2.4	Stress-Intensity-Factor Equations	00 05
	2.4.1 Inrough-Inickness Crack	35
	2.4.2 Single-Eage Notch	35

	2.4.3 Embedded Elliptical or Circular Crack in	
	Infinite Plate	37
	2.4.4 Surface Crack	39
	2.4.5 Cracks Growing from Round Holes	40
	2.4.6 Single Crack in Beam in Bending	40
	2.4.7 Holes or Cracks Subjected to Point or	
	Pressure Loading	41
	2.4.8 Estimation of Other $K_{\rm I}$ Factors	42
	2.4.9 Superposition of Stress-Intensity Factors	47
2.5	Crack-Tip Deformation and Plastic Zone Size	49
2.6	Effective K_{I} Factor for Large Plastic Zone Size	51
2.7	$J_{\rm I}$ and $\delta_{\rm I}$ Driving Forces	54
	2.7.1 J Integral	54
	2.7.2 CTOD (δ _I)	55
2.8	Summary	55
2.9	References	57
	Appendix	58
2.10	Griffith, CTOD and J-Integral Theories	58
	2.10.1 The Griffith Theory	58
	2.10.2 Crack-Tip Opening Displacement (CTOD)	58
	and the Dugdale Model	60
	2.10.3 <i>J</i> -Integral	63

PART II: FRACTURE BEHAVIOR

<i>Chapter 3</i> Resistance Forces— <i>K</i> _c - <i>J</i> _c -δ _c		67
3.1	General Overview	67
3.2	Service Conditions Affecting Fracture Toughness	69
	3.2.1 Temperature	70
	3.2.2 Loading Rate	70
	3.2.3 Constraint	71
3.3	ASTM Standard Fracture Tests	76
3.4	Fracture Behavior Regions	79
3.5	General ASTM Fracture Test Methodology	80
	3.5.1 Test Specimen Size	80
	3.5.2 Test Specimen Notch	82
	3.5.3 Test Fixtures and Instrumentation	82
	3.5.4 Analysis of Results	85
3.6	Relations Between K-J-δ	87
3.7	References	90
3.8	Appendix A: K, J, CTOD (δ) Standard Test Method—	
	E 1820	91

3.9	Appendix B: Reference Temperature T_{0} , to	
	Establish a Master Curve Using K_{Ic} Values in Standard	
	Test Method E 1921	93
Chap	oter 4	
Effects of Te	mperature, Loading Rate, and Constraint	95
4.1	Introduction	95
4.2	Effects of Temperature and Loading Rate on	
	$K_{\rm Le}, K_{\rm Le}(t)$, and $K_{\rm Le}$	96
4.3	Effect of Loading Rate on Fracture Toughness	98
4.4	Effect of Constraint on Fracture Toughness	101
4.5	Loading-Rate Shift for Structural Steels	109
	4.5.1 ČVN Temperature Shift	109
	4.5.2 K _{Ic} -K _{Id} Impact-Loading-Rate Shift	110
	4.5.3 $K_{\rm lc}(t)$ Intermediate-Loading Rate Shift	111
	4.5.4 Predictive Relationship for	
	Temperature Shift	112
	4.5.5 Significance of Temperature Shift	112
4.6	References	116
Chap	oter 5	
$CVN-K_{Id}-K_c$	Correlations	118
5.1	General	118
5.2	Two-Stage CVN- $K_{\rm Id}$ - $K_{\rm c}$ Correlation	119
5.3	K _{Ic} -CVN Upper-Shelf Correlation	120
5.4	$K_{\rm Id}$ Value at NDT Temperature	123
5.5	Comparison of CVN- K_{Id} - K_{Ic} - J and δ Relations	126
5.6	References	131
Chap	pter 6	
Fracture-Me	chanics Design	133
6.1	Introduction	133
6.2	General Fracture-Mechanics Design Procedure for	
	Terminal Failure	136
6.3	Design Selection of Materials	142
6.4	Design Analysis of Failure of a 260-InDiameter	
	Motor Case	146
6.5	Design Example—Selection of a High-Strength	
	Steel for a Pressure Vessel	150
	6.5.1 Case I—Traditional Design Approach	150
	6.5.2 Case II—Fracture-Mechanics Design	151
	6.5.3 General Analysis of Cases I and II	157
6.6	References	159

PART III: FATIGUE AND ENVIRONMENTAL BEHAVIOR

Chap	oter 7	
Introduction	to Fatigue	163
7.1	Introduction	163
7.2	Factors Affecting Fatigue Performance	164
7.3	Fatigue Loading	164
	7.3.1 Constant-Amplitude Loading	165
	7.3.2 Variable-Amplitude Loading	166
7.4	Fatigue Testing	167
	7.4.1 Small Laboratory Tests	168
	7.4.1a Fatigue-Crack-Initiation Tests	168
	7.4.1b Fatigue-Crack-Propagation Tests	173
	7.4.2 Tests of Actual or Simulated	
	Structural Components	174
7.5	Some Characteristics of Fatigue Cracks	174
7.6	References	181
Cha	nter 8	
Fatigue-Crac	ck Initiation	182
8.1	General Background	182
8.2	Effect of Stress Concentration on	
	Fatigue-Crack Initiation	184
8.3	Generalized Equation for Predicting the	
	Fatigue-Crack-Initiation Threshold for Steels	187
8.4	Methodology for Predicting Fatigue-Crack	
	Initiation from Notches	189
8.5	References	192
Chai	oter 9	
, Fatigue-Crac	k Propagation under Constant and Variable-Amplitude	
Load Fluctu	ation	194
9.1	General Background	194
9.2	Fatigue-Crack-Propagation Threshold	196
9.3	Constant Amplitude Load Fluctuation	200
	9.3.1 Martensitic Steels	200
	9.3.2 Ferrite-Pearlite Steels	201
	9.3.3 Austenitic Stainless Steels	202
	9.3.4 Aluminum and Titanium Alloys	202
9.4	Effect of Mean Stress on Fatigue-Crack	
	Propagation Behavior	204
9.5	Effects on Cyclic Frequency and Waveform	205

9.6	Effects of Stress Concentration on	
	Fatigue-Crack Growth	207
9.7	Fatigue-Crack Propagation in Steel Weldments	210
9.8	Design Example	212
9.9	Variable-Amplitude Load Fluctuation	216
	9.9.1 Probability-Density Distribution	216
	9.9.2 Fatigue-Crack Growth under	
	Variable-Amplitude Loading	218
	9.9.3 Single and Multiple High-Load Fluctuations	220
	9.9.4 Variable-Amplitude Load Fluctuations	221
	9.9.4.1 The Root-Mean-Square (RMS) Model	222
	9.9.4.2 Fatigue-Crack Growth Under	
	Variable-Amplitude	
	Ordered-Sequence Cyclic Load	223
9.10	Fatigue-Crack Growth in Various Steels	225
9.11	Fatigue-Crack Growth Under Various Unimodal	
	Distribution Curves	227
9.12	References	232
Chan	tor 10	
Fatigue and	Fracture Behavior of Welded Components	237
10.1		207
10.1	Introduction	237
10.2	Residual Stresses	238
10.3	Distortion Strong Concentration	240
10.4	Wold Discontinuities and Their Effects	241
10.5	10.5.1 Eatigue Creak Initiation Sites	243
10.6	Fatigue Crack Behavior of Welded Components	240
10.0	10.6.1 Eatigue Behavior of Smooth	250
	Welded Components	250
	10.6.1.1 Specimen Geometries and	250
	Test Methods	250
	10.6.1.2 Effects of Surface Roughness	250
	10.6.2 Fatigue Behavior of As-Welded Components	253
	10.6.2.1 Effect of Geometry	256
	10.6.2.2 Effect of Composition	258
	10.6.2.3 Effect of Residual Stress	260
	10.6.2.4 Effect of Postweld Heat Treatment	263
10.7	Methodologies of Various Codes and Standards	264
	10.7.1 General	264
	10.7.2 AASHTO Fatigue Design Curves for	1
	Welded Bridge Components	265
10.8	Variable Amplitude Cyclic Loads	269
	x <i>v</i>	

	10.8.1 Example Problem	270
10.9	Fracture-Toughness Behavior of Welded Components	272
	10.9.1 General Discussion	272
	10.9.2 Weldments	273
	10.9.3 Fracture-Toughness Tests for Weldments	275
10.10	References	279

Chapter 11

K _{Iscc} and Co	rrosion Fatigue Crack Initiation and Crack Propagation	281
11.1	Introduction	281
11.2	Stress-Corrosion Cracking	281
	11.2.1 Fracture-Mechanics Approach	283
	11.2.2 Experimental Procedures	284
	11.2.3 K _{Iscc} —A Material Property	286
	11.2.4 Test Duration	290
	11.2.5 $K_{\rm Iscc}$ Data for Some	
	Material-Environment Systems	291
	11.2.6 Crack-Growth-Rate Tests	294
11.3	Corrosion-Fatigue Crack Initiation	296
	11.3.1 Test Specimens and Experimental Procedures	296
	11.3.2 Corrosion-Fatigue-Crack-Initiation Behavior	
	of Steels	298
	11.3.2.1 Fatigue-Crack-Initiation Behavior	299
	11.3.2.2 Corrosion Fatigue	
	Crack-Initiation Behavior	299
	11.3.2.3 Effect of Cyclic-Load Frequency	302
	11.3.2.4 Effect of Stress Ratio	302
	11.3.2.5 Long-Life Behavior	303
	11.3.2.6 Generalized Equation for Predicting	
	the Corrosion-Fatigue Crack-Initiation	
	Behavior for Steels	304
11.4	Corrosion-Fatigue-Crack Propagation	305
	11.4.1 Corrosion-Fatigue Crack-Propagation Threshold	306
	11.4.2 Corrosion-Fatigue-Crack-Propagation Behavior	
	Below K_{Iscc}	311
	11.4.3 Effect of Cyclic-Stress Waveform	318
	11.4.4 Environmental Effects During Transient Loading	320
	11.4.5 Generalized Corrosion-Fatigue Behavior	322
11.5	Prevention of Corrosion-Fatigue Failures	325
11.6	References	326

PART IV: FRACTURE AND FATIGUE CONTROL

Chaj	oter 12	
Fracture and	Fatigue Control	333
12.1	Introduction	333
12.2	Historical Background	337
12.3	Fracture and Fatigue Control Plan	339
	12.3.1 Identification of the Factors	340
	12.3.2 Establishment of the Relative Contribution	342
	12.3.3 Determination of Relative Efficiency	346
	12.3.4 Recommendation of Specific	010
	Design Considerations	353
12.4	Fracture Control Plan for Steel Bridges	354
	12.4.1 General	354
	12.4.2 Design	354
	12.4.3 Fabrication	355
	12.4.4 Material	355
	12.4.5 AASHTO Charpy V-Notch Requirements	356
	12.4.6 Verification of the AASHTO	200
	Fracture Toughness Requirement	357
	12.4.7 High-Performance Steels	357
12.5	Comprehensive Fracture-Control Plans—	
	George R. Irwin	357
12.6	References	363
Cha	iter 13	
Fracture Crit	teria	364
13.1	Introduction	364
13.2	General Levels of Performance	366
13.3	Consequences of Failure	368
13.4	Original 15-ft-lb CVN Impact Criterion for	
	Ship Steels	370
13.5	Transition-Temperature Criterion	373
13.6	Through-Thickness Yielding Criterion	374
13.7	Leak-Before-Break Criterion	378
13.8	Fracture Criterion for Steel Bridges	381
13.9	Summary	382

13.10 References

Chapter 14 Fitness for Service 382

xii CONTENTS

14.1	Introduction	384
14.2	Use of Fracture Mechanics in	
	Fitness-for-Service Analysis	385
	14.2.1 General	385
	14.2.2 Effect of Loading Rate	386
	14.2.3 Effect of Constraint	389
	14.2.4 Effect of Many Factors	394
14.3	Existing Fitness-for-Service Procedures	396
	14.3.1 General	396
	14.3.2 PD 6493	397
	14.3.3 ASME Section XI	401
	14.3.4 API 579	402
14.4	Benefits of a Proof or Hydro-Test to Establish Fitness	
	for Continued Service	402
14.5	Difference Between Initiation and Arrest	
	(Propagation) Fracture Toughness Behavior	404
14.6	References	408

PART V: APPLICATIONS OF FRACTURE MECHANICS-CASE STUDIES

Chapter 15

Importance of	of Fracture Toughness and Proper Fabrication	
Procedures-	-The Bryte Bend Bridge	413
15.1	Introduction	413
15.2	AASHTO Fracture Control Plan for Steel Bridges	414
15.3	Bryte Bend Bridge Brittle Fracture	414
15.4	Design Aspects of the Bryte Bend Bridge as Related	
	to the AASHTO Fracture Control Plan (FCP)	420
15.5	Adequacy of the Current AASHTO Fracture	
	Control Plan	423
	15.5.1 Implied vs. Guaranteed Notch Toughness	423
	15.5.2 Effect of Details on Fatigue Life	424
	15.5.3 Summary	426
15.6	References	427
Chap	oter 16	
Importance of	of Constraint and Loading—The Ingram Barge	428
16.1	Introduction	428
16.2	Effect of Constraint on Structural Behavior	428
16.3	Constraint Experiences in the Ship Industry	431
16.4	Ingram Barge Failure	431
16 E	Summanı	136

16.5	Summary	436
16.6	References	437

Chapter 17 Importance of Loading and Inspection-Trans Alaska Pipeline Service Oil Tankers 438 17.1 Introduction 438 17.2 Background 439 17.3 Fracture Mechanics Methodology 439 Application of Methodology to a Detail in an 17.4 Oil Tanker 441 17.4.1 Identification of Critical Details 441 17.4.2 Fracture Toughness 441 17.4.3 Stress Intensity Factors and Critical Crack Size for Critical Details 443 17.4.4 Inspection Capability for Initial Crack Size, a_0 444 17.4.5 Determination of Histogram for Fatigue Loading 445 17.4.6 Fatigue Crack Propagation in Bottom Shell Plates 447 Effect of Reduced Fatigue Loading 17.5 450 17.6 Summary 453 References 17.7 454

Chapter 18

Спир							
Importance of Proper Analysis, Fracture Toughness, Fabrication, and Loading on Structural Behavior—Failure Analysis of a							
18.1	Introduction	455					
18.2	Description of the Failure	457					
18.3	Steel Properties	457					
18.4	Failure Analysis of Sheet 55	462					
18.5	Summary	466					
18.6	References	467					

Chapter 19

Importance of Loading Rate on Structural Performance—					
Burst Tests o	f Steel Casings	468			
19.1	Introduction	468			
19.2	Material and Experimental Procedures	468			
19.3	Experimental Procedure	469			
19.4	Failure Analysis	472			
19.5	Metallographic Analysis	476			
19.6	Examination of API Specifications for J-55 and				
	K-55 Casing	482			
19.7	References	487			

xiv CONTENTS

Chapter 20	
Problems	491
Part I	491
Part II	494
Part III	499
Part IV	502
Index	507

Foreword

(George Irwin wrote the following foreword for the first and second editions of this book in 1977 andd 1987. Dr. Irwin, the father of fracture mechanics, passed away in 1998.)

IN HIS WELL-KNOWN TEST on "Mathematical Theory of Elasticity," Love inserted brief discussions of several topics of engineering importance for which linear elastic treatment appeared inadequate. One of these topics was rupture. Love noted that various safety factors, ranging from 6 to 12 and based upon ultimate tensile strength, were in common use. He commented that "the conditions of rupture are but vaguely understood." The first edition of Love's treatise was published in 1892. Fifty years later, structural materials had been improved with a corresponding decrease in the size of safety factors. Although Love's comment was still applicable in terms of engineering practice in 1946, it is possible to see in retrospect that most of the ideas needed to formulate the mechanics of fracturing on a sound basis were available. The basic content of modern fracture mechanics was developed in the 1946 to 1966 period. Serious fracture problems supplied adequate motivation and the development effort was natural to that time of intensive technological progress.

Mainly what was needed was a simplifying viewpoint, progressive crack extension, along with recogniition of the fact that real structures contain discontinuities. Some discontinuities are prior cracks and others develop into cracks with applications of stress. The general ideas is as follows. Suppose a structural component breaks after some general plastic yield. Clearly a failure of this kind could be traced to a design error which caused inadequate section strength or to the application of an overload. The fracture failures which were difficult to understand are those which occur in a rather brittle manner at stress levels no larger than were expected when the structure was designed. Fractures of this second kind, in a special way, are also due to overloads. If one considers the stress redistribution around a pre-existing crack subjected to tension, it is clear that the region adjacent to the perimeter of the crack is overloaded due to the severe stress concentration and that local plastic strains must occur. If the toughness is limited, the plastic strains at the crack border may be accompanied by crack extension. However, from similitude, the crack border overload increases with crack size. Thus progressive crack extension tends to be self stimulating.

Given a prior crack, and a material of limited toughness, the possibility for development of rapid fracturing prior to general yielding is therefore evident.

Analytical fracture mechanics provides methods for characterizing the "overload" at the leading edge of a crack. Experimental fracture mechanics collects information of practical importance relative to fracture toughness, fatigue cracking, and corrosion cracking. By centering attention on the active region involved in progressive fracturing, the collected laboratory data are in a form which can be transferred to the leading edge of a crack in a structural component. Use of fracture mechanics analysis and data has explained many service fracture failures with a satisfactory degree of quantitative accuracy. By studying the possibilities for such fractures in advance, effective fracture control plans have been developed.

Currently the most important task is educational. It must be granted that all aspects of fracture control are not yet understood. However, the information now available is basic, widely applicable, and should be integrated into courses of instruction in strength of materials. The special value of this book is the emphasis on practical use of available information. The basic concepts of fracture mechanics are presented in a direct and simple manner. The descriptions of test methods are clear with regard to the essential experimental details and are accompanied by pertinent illustrative data. The discussions of fracture control are wellbalanced. Readers will learn that fracture control with real structures is not a simple task. This should be expected and pertains to other aspects of real structures in equal degree. The book provides helpful fracture control suggestions and a sound viewpoint. Beyond this the engineer must deal with actual problems with such resources as are needed. The adage "experience is the best teacher" does not seem to be altered by the publication of books. However, the present book by two highly respected experts in applications of fracture mechanics provides the required background training. Clearly the book serves its intended purpose and will be of lasting value.

George R. Irwin

University of Maryland College Park, Maryland

Preface

THE FIELD OF FRACTURE MECHANICS has become the primary approach to controlling fracture and fatigue failures in structures of all types. This book introduces the field of fracture mechanics from an applications viewpoint. Then it focuses on fitness for service, or life extension, of existing structures. Finally, it provides case studies to allow the practicing professional engineer or student to see the applications of fracture mechanics directly to various types of structures.

Since the first publication of this book in 1977, and the second edition in 1987, the field of fracture mechanics has grown significantly. Several specifications for fracture and fatigue control now either use fracture mechanics directly or are based on concepts of fracture mechanics. In this book, we emphasize applications of fracture mechanics to prevent fracture and fatigue failures in structures, rather than the theoretical aspects of fracture mechanics.

The concepts of *driving force* and *resistance force*, widely used in structural engineering, are used to help the reader differentiate between the mathematical side of fracture mechanics and the materials side of fracture mechanics. The driving force, K_{I} , is a calculated value dependent only upon the structure (or specimen) geometry, the applied load, and the size and shape of a flaw. Material properties are *not* needed to calculate values of K_{I} . It is analogous to the calculation of the applied stress, σ , in an unflawed structure. In fatigue, the driving force is $\Delta K = K_{I_{max}} - K_{I_{min}}$, analogous to $\Delta \sigma = \sigma_{max} - \sigma_{min}$.

In contrast, the resistance force, K_c (or K_{Ic} , or $\delta_{c'}$ or $J_{Ic'}$ etc.), is a material property that can be obtained only by testing. Furthermore, this property can vary widely within a given ASTM composition, depending upon thermomechanical processing as well as a function of temperature, loading rate, and constraint, depending on the material. It is analogous to the measurement of yield strength.

By focusing on whether fracture mechanics is being used to *calculate* the driving force or to *measure* the resistance force, much of the mystery of fracture mechanics is eliminated. In the same manner that the driving stress, σ , is kept below the resistance stress, σ_{ys} , to prevent yielding, K_I should be kept below K_c to prevent fracture.

We believe the book will serve as an introduction to the field of fracture mechanics to practicing engineers, as well as seniors or beginning graduate students. This field has become increasingly important to the engineering community. In recent years, structural failures and the desire for increased safety and reliability of structures have led to the development of various fracture and fatigue criteria for many types of structures, including bridges, planes, pipelines, ships, buildings, pressure vessels, and nuclear pressure vessels.

In addition, the development of fracture-control plans for new and unusual types of structures has become more widespread. More importantly, the growing age of all types of structures, coupled with the economic fact that they may not be able to be replaced, necessitates a close look at the current safety and reliability of existing structures, i.e, a fitness for service or life extension consideration.

In this book, each of the topics of fracture criteria and fracture control is developed from an engineering viewpoint, including some economic and practical considerations. The book should assist engineers to become aware of the fundamentals of fracture mechanics and, in particular, of controlling fracture and fatigue failures in structures. Finally, the use of fracture mechanics in determining fitness for service or life extension of existing structures whose *design* life may have expired but whose *actual* life can be continued is covered.

In Parts I and II, the fundamentals of fracture mechanics theory are developed. In describing fracture behavior, the concepts of driving force (K_I), Part I, and the resistance force (K_c), Part II, are introduced. Examples of the calculations or the measurement of these two basic parts of fracture mechanics are presented for both linear-elastic and elastic-plastic conditions.

The effects of temperature, loading rate, and constraint on the measurement of various resistance forces (K_c , K_{Ic} , or δ_c , or J_{Ic} , etc.) are presented in Part II. Correlations between various types of fracture tests also are described.

In Part III, fatigue behavior (i.e., repeated loading) in structures is introduced by separating fatigue into initiation and propagation lives. The total fatigue life of a test specimen, member or structure, N_t , is composed of the initiation life, N_i , and the propagation life, N_p . Analysis of both of these components is presented as separate topics. In calculating the driving force, ΔK_1 , the same K_1 expressions developed in Part I for fracture are used in fatigue analyses of members with cracks subjected to repeated loading. Fatigue of weldments is also treated as a separate topic. Environmental effects (K_{Iscc}) complete the topics covered in Part III.

Parts I, II, and III focus on an introduction to the complex field of fracture mechanics as applied to fracture and fatigue in a straightforward, logical manner. The authors believe that Parts I, II, and III will serve the very vital function of introducing the topic to students and practicing engineers from an applied viewpoint.

Part IV focuses on applying the principles described in Parts I, II, and III to fracture and fatigue control as well as fitness for service of existing structures. Also called life extension, fitness for service is becoming widely used in many fields.

Many of today's existing bridges, ships, pressure vessels, pipelines, etc. have reached their original design life. If, from an economic viewpoint, it is desirable to continue to keep these structures in service, fracture mechanics concepts can be used to evaluate the structural integrity and reliability of existing structures. This important engineering field has been referred to as *fitness for service* or *life extension* and is described in Part IV.

Part V, Applications of Fracture Mechanics—Case Studies, should be invaluable to practicing engineers responsible for assessing the safety and reliability of existing structures, as well as showing students real world applications. The importance of the factors affecting fracture and fatigue failures is illustrated by case studies of actual failures. Case studies are described in terms of the importance of factors such as fracture toughness, fabrication, constraint, loading rate, etc. in the particular case study. Thus, for example, a case study describing the importance of constraint in a failure can easily be used in other types of structures where constraint is important.

Finally, the authors wish to acknowledge the support of our many colleagues, some of whom are former students who have contributed to the development of this book as well as to the continued encouragement and support of our families.

> John Barsom Stan Rolfe

ABOUT THE AUTHORS

DR. JOHN BARSOM is a consultant in the area of fracture mechanics, failure analysis, and accident reconstruction. He retired after 31 years with USX as Research Fellow and was chief of the Materials Behavior Division. Dr. Barsom has published more than 70 technical papers on fracture, fatigue, environmental effects, and steel properties.

Past chairman of ASTM Committee E08 on Fracture Testing, Dr. Barsom is a recipient of the ASTM Award of Merit and a fellow of the Society. He is also a fellow of the ASM International, a fellow of ASME, and, in 1983, was named Engineer of the Year by the ASME Pittsburgh Chapter.

He is a member of the Project Oversite Committee of the SAC Steel Project on earthquake design and a member of the AISC (American Institute of Steel Construction) Committee on Specifications. He was chairman of the PVRC (Pressure Vessel Research Council) Committee on Failure Modes of Components, the AISI Committee on Transportation and Infrastructure, and the NSBA (National Steel Bridge Alliance) Committee on Technology and Education.

Dr. Barsom holds a Ph.D. in mechanical engineering, an M.S. in mathematics, and a B.S. in physics from the University of Pittsburgh.

DR. STANLEY ROLFE is the Albert P. Learned Professor of Engineering at the University of Kansas and has for the past 30 years taught and conducted research on the fracture and fatigue behavior of materials, experimental stress analysis, fracture mechanics, and behavior of structural materials as related to the design of structures. He has published more than 70 technical papers on fracture, fatigue, and behavior.

He received the Irvin E. Youngberg Research Award from the University of Kansas and the University of Illinois

College of Engineering Alumni Honor Award for distinguished service in engineering. Dr. Rolfe holds a Ph.D. in civil engineering from the University of Illinois.

He is a registered professional engineer in Pennsylvania and Kansas and a member of the National Academy of Engineering.

One of the biggest improvements over previous editions is that a new section on case studies of classic failures of steel structures is included. As one involved in reliability of steel structures for over 35 years, I find this book an indispensable addition to my actively utilized library.

ROBERT J. (JIM) GOODE, P.E., Consulting Engineer

I2BN 0-9037-5095-P