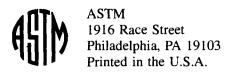
AUTOMATION in SASSIBLE and FRAGIUSE

TESTING AND ANALYSIS

Claude Amzallag


EDITOR

Automation in Fatigue and Fracture: Testing and Analysis

Claude Amzallag, Editor

ASTM Publication Code Number (PCN): 04-012310-30

Library of Congress Cataloging-in-Publication Data

Automation in fatigue and fracture: testing and analysis / Claude

Amzallag, editor. (STP: 1231)

"ASTM publication code number (PCN) 04-012310-30."

Includes bibliographical references and index.

ISBN 0-8031-1985-2

1. Materials—Testing—Automation. 2. Materials—Fatique.

3. Fracture mechanics. I. Amzallag, C. II. Series: ASTM special

technical publication: 1231.

TA410.A84 1994

620.1'126—dc20

94-36845

CIP

Copyright © 1994 AMERICAN SOCIETY FOR TESTING AND MATERIALS, Philadelphia, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

Photocopy Rights

Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by the AMERICAN SOCIETY FOR TESTING AND MATERIALS for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$2.50 per copy, plus \$0.50 per page is paid directly to CCC, 222 Rosewood Dr., Danvers, MA 01923; Phone: (508) 750-8400; Fax: (508) 750-4744. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is 0-8031-1985-2/94 \$2.50 + .50.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution to time and effort on behalf of ASTM.

Printed in Fredericksburg, VA
December 1994

Foreword

The International Symposium on Automation in Fatigue and Fracture: Testing and Analysis, was held 15–17 June 1992 in Paris, France. It was cosponsored by the: Societe Francaise de Metallurgie et de Materiaux (SF2M), Committee on Fatigue, France; and American Society for Testing and Materials (ASTM), Committee E9 on Fatigue, USA.

Also offering valuable cooperation were the: Society of Automotive Engineers (SAE); Fatigue Design and Evaluation Committee, USA; Engineering Integrity Society (EIS), UK; and National Research Institute for Metals (NRIM), Japan.

The Symposium was an extension of the series of International Spring Meetings of SF2M. This publication is a result of this symposium. Claude Amzallag, IRSID-Unieux, France, is the editor.

Acknowledgment

The Organizing Committee, who helped develop the program and provide session chairmen and reviewers, are acknowledged for their assistance. Ms. Gail Leese, (PACCAR Technical Center, USA) and Dr. Dale Wilson (Tennessee Technical University, USA) helped shape the symposium, provide reviewers, and graciously offered their time in reviewing papers.

In addition to the help of the technologists cited above, the editor wishes to express gratitude to the staff members of SF2M and ASTM, particularly Yves Franchot, SF2M, who handled the administration of the symposium.

Contents

Overview	1
AUTOMATED TESTING SYSTEMS AND METHODS	
A Historical Overview and Discussion of Computer-Aided Materials Testing—A. A. BRAUN	5
General Purpose Software for Fatigue Testing—S. DHARMAVASAN AND S. M. C. PEERS	18
A Sampling of Mechanical Test Automation Methodologies Used in a Basic Research Laboratory—G. A. HARTMAN, N. E. ASHBAUGH, AND D. J. BUCHANAN	36
Computer Applications in Full-Scale Aircraft Fatigue Tests—R. L. HEWITT AND R. S. RUTLEDGE	51
Microprocessor-Based Controller for Actuators in Structural Testing—R. SUNDER AND C. S. VENKATESH	70
An Automated Image Processing System for the Measurement of Short Fatigue Cracks at Room and Elevated Temperatures—L. YI, R. A. SMITH, AND L. GRABOWSKI	84
Computer-Aided Laser Interferometry for Fracture Testing—A. K. MAJI AND J. WANG	95
Automated Data Acquisition and Data Bank Storage of Mechanical Test Data: An Integrated Approach—G. BRACKE, J. BRESSERS, M. STEEN, AND H. H. OVER	108
Sampling Rate Effects in Automated Fatigue Crack Growth Rate Testing— J. K. DONALD	124
Procedure for Automated Tests of Fatigue Crack Propagation—v. BACHMANN, G. MARCI, AND P. SENGEBUSCH	146
Automation of Fatigue Crack Growth Data Acquisition for Contained and Through-Thickness Cracks Using Eddy-Current and Potential Difference Methods—M. D. HALLIDAY AND C. J. BEEVERS	164

A Computer-Aided Technique for the Determination of R-Curves from Center-Cracked Panels of Nonstandard Proportions—G. R. SUTTON, C. E. THOMAS, C. WHEELER, AND R. N. WILSON	186
FATIGUE UNDER VARIABLE AMPLITUDE LOADING	
The Significance of Variable Amplitude Fatigue Testing—D. SCHÜTZ AND P. HEULER	201
Spectrum Fatigue Life Assessment of Notched Specimens Using a Fracture Mechanics Based Approach—M. VORMWALD, P. HEULER, AND C. KRAE	221
Spectrum Fatigue Testing Using Dedicated Software—G. MARQUIS AND J. SOLIN	241
A Computerized Variable Amplitude Fatigue Crack Growth Rate Test Control System—J. A. JOYCE AND W. WRIGHT	257
Automated Fatigue Test System for Spectrum Loading Simulation of Railroad Rail Cracks—D. A. JABLONSKI	273
High-Cycle Fatigue of Austenitic (316L) and Ferritic (A508) Steels Under Gaussian Random Loading—JP. GAUTHIER, C. AMZALLAG, JA. LE DUFF, AND ES. DIAZ	286
Crack Closure Measurements and Analysis of Fatigue Crack Propagation Under Variable Amplitude Loading—C. AMZALLAG, JA. LE DUFF, C. ROBIN, AND G. MOTTET	311
A Fatigue Crack Propagation Model Under Variable Loading—J. GERALD AND A. MENEGAZZI	334
Sensitivity of Equivalent Load Crack Propagation Life Assessment to Cycle-Counting Technique—E. LE PAUTREMAT, M. OLAGNON, AND A. BIGNONNET	353
FATIGUE AND FRACTURE ANALYSIS AND SIMULATION	
Fatigue Life Prediction Under Periodical or Random Multiaxial Stress States— JL. ROBERT, M. FOGUE, AND J. BAHUAUD	369
Neuber-Based Life Prediction Procedure for Multiaxially Loaded Components— D. HANSCHMANN, E. MALDFELD, AND H. NOWACK	388
Fatigue Test Methods and Damage Models Used by the SNCF for Railway Vehicle Structures—A. LELUAN	405
Load Simulation Test System for Agricultural Tractors—K. NISHIZAKI	419
Applying Contemporary Life Assessment Techniques to the Evaluation of Urban Bus Structures—M. M. DE FREITAS, N. M. MAIA, J. MONTALVÃO E SILVA, AND J. D. SILVA	428

Fatigue and Fracture Analysis of Type 316L Thin-Walled Piping for Heavy Water Reactors: Crack Growth Prediction Over 60 Years (With and Without Stratification) and Flawed Pipe Testing—A. B. POOLE	443
A Rule-Based System for Estimating High-Temperature Fatigue Life— P. J. BONACUSE	466
Optimum Fracture Control Plan for Gas Turbine Engine Components—T. LASSEN	477
APPLICATIONS AND PREDICTION METHODS	
Prediction of the Fatigue Life of Mechanical Structures—JF. FLAVENOT	493
Fatigue Testing and Life Prediction for Notched Specimens of 2024 and 7010 Alloys Subjected to Aeronautical Spectra—C. BLEUZEN, M. CHAUDONNERET, L. FARCY, JF. FLAVENOT, AND N. RANGANATHAN	508
Using Maximum Likelihood Techniques in Evaluating Fatigue Crack Growth Curves—S. E. CUNNINGHAM AND C. G. ANNIS, JR.	531
Advances in Hysteresis Loop Analysis and Interpretation by Low-Cycle Fatigue Test Computerization—G. DEGALLAIX, P. HOTTEBART, A. SEDDOUKI, AND S. DEGALLAIX	546
Thermal-Mechanical Fatigue Testing—A. KOSTER, E. FLEURY, E. VASSEUR, AND L. REMY	563
Measurement of Transformation Strain During Fatigue Testing—R. W. NEU AND H. SEHITOGLU	581
An Automatic Ultrasonic Fatigue Testing System for Studying Low Crack Growth at Room and High Temperatures—T. WU, J. NI, AND C. BATHIAS	598
Database for Aluminum Fatigue Design—D. KOSTEAS, R. ONDRA, AND W. W. SANDERS, JR.	608
Material Data Banks: Design and Use, an Example in the Automotive Industry—A. DIBOINE	622
Hypertext and Expert Systems Application in Fatigue Assessment and Advice— C. A. McMAHON, S. BANERJEE, J. H. SIMS WILLIAMS, AND J. DEVLUKIA	634
A Software System for the Enhancement of Laboratory Calculations—A. GALTIER	648
Author Index	657
Subject Index	659