

FATIGUE AND DYNAMIC TESTING OF BITUMINOUS MIXTURES

AST) AMERICAN SOCIETY FOR TESTING AND MATERIALS

FATIGUE AND DYNAMIC TESTING OF BITUMINOUS MIXTURES

A symposium presented at the Seventy-sixth Annual Meeting AMERICAN SOCIETY FOR TESTING AND MATERIALS Philadelphia, Pa. 24-29 June 1973

ASTM SPECIAL TECHNICAL PUBLICATION 561 V. P. Puzinauskas, symposium chairman

List price \$15.50 04-561000-08

© by AMERICAN SOCIETY FOR TESTING AND MATERIALS 1974

Library of Congress Catalog Card Number: 74-81156

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

> Printed in Tallahassee, Fla. October 1974

Foreword

The symposium on Fatigue and Dynamic Testing of Bituminous Mixtures was presented at the Seventy-sixth Annual Meeting of the American Society for Testing and Materials held in Philadelphia, Pa., 24-29 June 1973. Committee D-4 on Road and Paving Materials sponsored the symposium. V. P. Puzinauskas, The Asphalt Institute, presided as symposium chairman.

Related ASTM Publications

Fatigue of Compacted Bituminous Aggregate Mixtures, STP 508 (1972), \$13.75 (04-508000-08)

Viscosity Testing of Asphalt and Experience with Viscosity Graded Specifications, STP 532 (1973), \$8.75 (04-532000-08)

Contents

Introduction

Statistical Characteristics of Fatigue Damage Accumulation	
in Flexible Pavements-J. E. SOUSSOU and F. MOAVENZADEH	3
Probabilistic Methods	4
Closed Form Probabilistic Solution	4
Numerical Application	8
Summary and Conclusions	10
Influence of Laboratory Test Results for	
Asphaltic Concrete-L. H. IRWIN and B. M. GALLAWAY	12
Equipment and Procedures	18
Discussion	35
Conclusions and Recommendations	40
Techniques for Characterizing Bituminous Materials Using a	
Versatile Triaxial Testing System – R. L. TERREL,	
I. S. AWAD, and L. R. FOSS	47
Triaxial Test System	48
Material	54
Tests-Procedure and Results	56
Concluding Remarks	65
Summary of Complex Modulus Laboratory Test Procedures	
and Results-M. W. WITCZAK and R. E. ROOT	67
Effect of Test Variables	70
Variability of the Dynamic Modulus Test	75
Relationship Between Dynamic Modulus and Flexural	
Stiffness Tests	87
Recommendations and Conclusions	90
Dynamic Response and Fatigue Characteristics of Asphaltic	
MixturesC. L. SARAF and KAMRAN MAJIDZADEH	95
Materials and Testing Procedures	97
Analysis of Results	103
Summary and Conclusions	113

Dynamic Testing of Bituminous Mixtures for Permanent	
Deformation Response - J. MORRIS and R. C. G. HASS	115
Design Approaches for Prediction of Permanent Deformation	116
Equipment Operational Requirements	117
Description of Apparatus and Test Methods	119
Conclusions	129
Material Characterizations for Rational Pavement Design-W. J. KENIS	132
Structural Subsystem (VESYS II) Interactions	134
Variability of Material Properties	136
Suggested Laboratory Method for Estimating Compliance	
Variation	144
Limitations and Use of the VESYS II Program	146
Summary	150