FRACTURE MECHANICS

Proceedings of the Eleventh National Symposium on Fracture Mechanics: Part I

C. W. Smith, editor

FRACTURE MECHANICS

Proceedings of the Eleventh National Symposium on Fracture Mechanics: Part I

A symposium sponsored by ASTM Committee E-24 on Fracture Testing of Metals AMERICAN SOCIETY FOR TESTING AND MATERIALS Virginia Polytechnic Institute and State University Blacksburg, Va., 12-14 June 1978

ASTM SPECIAL TECHNICAL PUBLICATION 677 C. W. Smith, Virginia Polytechnic Institute and State University, editor

List price \$60.00 04-677000-30

Copyright© AMERICAN SOCIETY FOR TESTING AND MATERIALS 1979 Library of Congress Catalog Card Number: 78-74567

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

> Printed in Baltimore, Md. August 1979

Foreword

This publication, *Fracture Mechanics*, contains papers presented at the Eleventh National Symposium on Fracture Mechanics which was held 12–14 June 1978 at Virginia Polytechnic Institute and State University, Blacksburg, Va. The American Society for Testing and Materials' Committee E-24 on Fracture Testing of Metals sponsored the symposium. C. W. Smith, Virginia Polytechnic Institute and State University, served as editor of this publication.

The proceedings have been divided into two volumes: Part I—Fracture Mechanics and Part II—Fracture Mechanics Applied to Brittle Materials.

Related ASTM Publications

Developments in Fracture Mechanics Test Methods Standardization, STP 632 (1977), \$24.75, 04-632000-30

Fractography-Microscopic Cracking Process, STP 600 (1976), \$27.50, 04-600000-30

Mechanics of Crack Growth, STP 590 (1976), \$45.25, 04-590000-30

A Note of Appreciation to Reviewers

This publication is made possible by the authors and, also, the unheralded efforts of the reviewers. This body of technical experts whose dedication, sacrifice of time and effort, and collective wisdom in reviewing the papers must be acknowledged. The quality level of ASTM publications is a direct function of their respected opinions. On behalf of ASTM we acknowledge with appreciation their contribution.

ASTM Committee on Publications

Editorial Staff

Jane B. Wheeler, Managing Editor Helen M. Hoersch, Associate Editor Ellen J. McGlinchey, Senior Assistant Editor Helen Mahy, Assistant Editor

Contents

Introduction	1
FATIGUE CRACK GROWTH STUDIES	
Effect of Biaxial Stresses on Crack Growth—A. F. LIU, J. E. ALLISON, D. F. DITTMER, AND J. R. YAMANE	5
Fatigue Crack Growth Threshold in Mild Steel Under Combined Loading— L. P. POOK AND A. F. GREENAN	23
Sequence Effects on Fatigue Crack Propagation; Mechanical and Micro- structural Contributions—H. NOWACK, K. H. TRAUTMANN, K. SCHULTE, AND G. LÜTJERING	36
Variations in Crack Growth Rate Behavior—M. E. ARTLEY, J. P. GALLAGHER, AND H. D. STALNAKER	54
Application of Fracture Mechanics to Damage Accumulation in High Temperature Fatigue—M. J. DOUGLAS AND A. PLUMTREE	68
Cryogenic Effects on the Fracture Mechanics Parameters of Ferritic Nickel Alloy Steels-R. L. TOBLER, R. P. MIKESELL, AND R. P. REED	85
Evaluation of Temperature Effects on Crack Growth in Aluminum Sheet Material—D. E. PETTIT AND J. M. VAN ORDEN	106
Effects of Temperature and Frequency on the Fatigue Crack Growth Rate Properties of a 1950 Vintage CrMoV Rotor Material—T. T. SHIH AND G. A. CLARKE	125
Structural Memory of Cracked Components Under Irregular Loading- H. FÜHRING AND T. SEEGER	144
Effect of the Active Plastic Zone on Fatigue Crack Growth Rates- GUNTER MARCI	168
A Comparative Experimental Study on the Fatigue Crack Closure Behavior Under Cyclic Loading for Steels and Aluminum Alloys—J. A. VAZQUEZ, AUGUSTO MORRONE, AND J. C. GASCO	187
Effect of Residual Stresses on Fatigue Crack Growth in Steel Weldments Under Constant and Variable Amplitude Loads—GRZEGORZ GLINKA	198
Role of Crack-Tip Stress Relaxation in Fatigue Crack Growth—A. SAXENA AND S. J. HUDAK, JR.	215
Crack Closure During Fatigue Crack Propagation—W. J. D. SHAW AND I. LE MAY	233

Fatigue at Notches and the Local Strain and Fracture Mechanics Approaches- N. E. DOWLING	247
A Strain Based Intensity Factor Solution for Short Fatigue Cracks Initiating from Notches—M. H. EL HADDAD, K. N. SMITH, AND T. H. TOPPER	274
Crack Initiation in a High-Strength Low-Alloy Steel—B. L. BRAGLIA, R. W. HERTZBERG, AND RICHARD ROBERTS	290
Effect of Spherical Discontinuities on Fatigue Crack Growth Rate Per- formanceW. G. CLARK, JR.	303
Prediction of Fatigue Crack Growth Under Spectrum Loads—A. E. GEMMA AND D. W. SNOW	320

SURFACE FLAWS

Semi-Elliptical Cracks in a Cylinder Subjected to Stress Gradients—J. HELIOT, R. C. LABBENS, AND A. PELLISSIER-TANON	341
Stress Intensity Factor Solutions for Internal Longitudinal Semi-Elliptical Surface Flaws in a Cylinder Under Arbitrary Loadings—J. J. MCGOWAN AND M. RAYMUND	365
Theoretical and Experimental Analysis of Semi-Elliptical Surface Cracks Subject to Thermal Shock—G. YAGAWA, M. ICHIMIYA, AND Y. ANDO	381
Growth of Part-Through Cracks—L. HODULAK, H. KORDISCH, S. KUNZEL- MANN, AND E. SOMMER	399
Stress Intensity Factors for Two Symmetric Corner Cracks—I. S. RAJU AND J. C. NEWMAN, JR.	411
Influence of Flaw Geometries on Hole-Crack Stress Intensities—C. W. SMITH, W. H. PETERS, AND S. F. GOU	431
Experimental Fracture Mechanics—K _{ic} , J _{ic} , Specimen Geometry Effi and Experimental Techniques	ects,
Variation of Fracture Toughness with Specimen Geometry and Loading Conditions in Welded Low Alloy Steels—A. PENELON, M. N. BASSIM, AND J. M. DORLOT	449
J _{Ic} Results and Methods with Bend Specimens—J. H. UNDERWOOD	463
Investigation of Specimen Geometry Modifications to Determine the Con- servative, J ₁ -R Curve Tearing Modulus Using the HY-130 Steel	
System—J. P. GUDAS, J. A. JOYCE, AND D. A. DAVIS	474

An Experimental Study of the Crack Length/Specimen Width (a/W) Ratio Dependence of the Crack Opening Displacement (COD) Test Using Small-Scale Specimens—P. M. S. T. DE CASTRO, J. SPURRIER, AND P. HANCOCK

486

Dynamic Photoelastic and Dynamic Finite Element Analyses of Polycarbonate Dynamic Tear Test Specimens—S. MALL, A. S. KOBAYASHI, AND Y. URABE	498
Effect of Specimen Geometry on Crack Growth Resistance-S. J. GARWOOD	511
Single-Edge-Cracked Crack Growth Gage—J. A. ORI AND A. F. GRANDT, JR.	533
Measurement of Crack-Tip Stress Distributions by X-Ray Diffraction—J. E. ALLISON	550
Correlations Between Ultrasonic and Fracture Toughness Factors in Metallic Materials—ALEX VARY	563
Special Topics	
Analysis of Load-Displacement Relationships to Determine J-R Curve and Tearing Instability Material Properties—HUGO ERNST, P. C. PARIS, MARK ROSSOW, AND J. W. HUTCHINSON	581
Path Dependence of J in Three Numerical Examples—M. E. KARABIN, JR., AND J. L. SWEDLOW	600
Description of Stable and Unstable Crack Growth in the Elastic Plastic Regime in Terms of J_r Resistance Curves—C. E. TURNER	614
Strain Energy Release Rate Method for Predicting Failure Modes in Com- posite Materials—R. S. WILLIAMS AND K. L. REIFSNIDER	629
An Analysis of Tapered Double-Cantilever-Beam Fracture Toughness Test for Adhesive Joints—S. S. WANG	651
Analytical Modeling and ND Monitoring of Interlaminar Defects in Fiber- Reinforced Composites—R. L. RAMKUMAR, S. V. KULKARNI, R. B. PIPES, AND S. N. CHATTERJEE	668
Stress Intensity Factors for a Circular Ring with Uniform Array of Radial Cracks Using Cubic Isoparametric Singular Elements—S. L. PU AND M. A. HUSSAIN	685
Interpretations of Crack Surface Topologies for Poly(Vinyl Chloride)	700
Engineering Applications	
Experimental Determination of K _I for Hollow Rectangular Tubes Containing Corner Cracks—M. E. MCDERMOTT AND R. I. STEPHENS	71 9
Fracture Analysis of a Pneumatically Burst Seamless-Steel Compressed Gas Container—B. W. CHRIST, J. H. SMITH, AND G. E. HICHO	734
Crack Growth in Externally Flawed, Autofrettaged Thick-Walled Cylinders and Rings—J. A. KAPP AND R. EISENSTADT	746
Estimating Fatigue Crack Propagation Lives at the Test Site-D. R. GALLIART	757
On the Cup and Cone Fracture of Tensile Bars—B. KONG AND P. C. PARIS	770

SUMMARY

Summary	783
Index	789