
COMPOSITEMATERIALS

AST 972

Composite Materials: Testing and Design (Eighth Conference)

John D. Whitcomb, editor

ASTM Publication Code No. (PCN) 04-972000-33 ISBN No. 0-8031-0980-6 ISSN No. 0899-1308

Copyright © by American Society for Testing and Materials 1988

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Peer Review Policy

Each paper published in this volume was evaluated by three peer reviewers. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers. The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM.

Foreword

The Eighth Conference on Composite Materials: Testing and Design was held 29 April-1 May 1986 in Charleston, South Carolina. ASTM Committee D-30 on High Modulus Fibers and Their Composites sponsored the conference. John D. Whitcomb, NASA Langley Research Center, served as conference chairman and editor of this publication. Most of the papers presented are included in this volume, which complements the first, second, third, fourth, fifth, sixth, and seventh conference publications—ASTM STP 460, ASTM STP 497, ASTM STP 546, ASTM STP 617, ASTM STP 674, ASTM STP 787, and ASTM STP 893, Composite Materials: Testing and Design.

Contents

Overview	1
Analysis	
Automated Design of Composite Plates for Improved Damage Tolerance— ZAFER GÜRDAL AND RAPHAEL T. HAFTKA	5
Composite Interlaminar Fracture Toughness: Three-Dimensional Finite-Element Modeling for Mixed Mode I, II, and Fracture—PAPPU L. N. MURTHY AND CHRISTOS C. CHAMIS	23
Sublaminate- or Ply-Level Analysis of Composites and Strain Energy Release Rates of End-Notch and Mixed-Mode Fracture Specimens—RAO R. VALISETTY AND CHRISTOS C. CHAMIS	41
A Cumulative Damage Model for Continuous Fiber Composite Laminates with Matrix Cracking and Interply Delaminations—DAVID H. ALLEN, SCOTT E. GROVES, AND CHARLES E. HARRIS	57
Interlaminar Fracture Analysis of Composite Laminates Under Bending and Combined Bending and Extension—ERIAN A. ARMANIOS AND LAWRENCE W. REHFIELD	81
Impact and Compression	
Effect of Adhesive Layers on Impact Damage in Composite Laminates—C. T. SUN AND SAID RECHAK	97
The Correlation of Low-Velocity Impact Resistance of Graphite-Fiber-Reinforced Composites with Matrix Properties—KENNETH J. BOWLES	124
The Sandwich Column as a Compressive Characterization Specimen for Thin Laminates—PAUL A. LAGACE AND ANTHONY J. VIZZINI	143
Instability-Related Delamination Growth in Thermoset and Thermoplastic Composites—ROBERT 1. ROTHSCHILDS, JOHN W. GILLESPIE, 1R., AND LEIF A. CARLSSON	161
Two-Dimensional Delamination Growth in Composite Laminates Under Compression Loading—GERRY FLANAGAN	180
An Experimental Study of a Curved Composite Panel with a Cutout— ANTHONY N. PALAZOTTO	191

MATERIALS CHARACTERIZATION

Characterizing the Tensile Stress-Strain Nonlinearity of Polyacrylonitrile-Based Carbon Fibers—I. M. KOWALSKI	205
Development of a Standard Quality-Control Test Method for Determining the Fiber Strength of Graphitized Roving—STEVEN L. KIRSHENBAUM, H. J. BARKER, AND D. W. DOWELL	217
The Development of a Satisfactory, Simple, Shear Fatigue Test for Unidirectional E-Glass Epoxy—RAYMOND J. BUTLER, PETER M. BARNARD, AND PAUL T. CURTIS	227
Height-Tapered Double Cantilever Beam Specimen for Study of Rate Effects on Fracture Toughness of Composites—GERSHON YANIV AND ISAAC M. DANIEL	241
A Constant ΔG Test for Measuring Mode I Interlaminar Fatigue Crack Growth Rates— ALAN J. RUSSELL AND KEN N. STREET	259
Failure Mechanisms	
Growth of Elliptic Delaminations in Laminates Under Cyclic Transverse Shear Stresses—sailendra n. chatterjee, venkatachalam ramnath, william a. dick, and yong-zhen chen	281
Analytical and Experimental Investigation of the Notched Strength of Thick Laminates with Surface Notches—Charles E. Harris, don H. Morris, and ERIC W. NOTTORF	298
Analysis of Delamination Growth from Matrix Cracks in Laminates Subjected to Bending Loads—GRETCHEN BOSTAPH MURRI AND E. GAIL GUYNN	322
Interlaminar Fracture Processes in Resin Matrix Composites Under Static and Fatigue Loading—ambur d. reddy, lawrence w. rehfield, freddy weinstein, and erian a. armanios	340
Failure Mechanism of Delamination Fracture—SHAW MING LEE	356
Nondestructive Evaluation	
The Use of Acoustic Emission to Detect the Onset of Interlaminar Shear Failure in Short Beam Fatigue Specimens—JOHN H. EDWARDS	369
Damage Assessment by Acousto-Ultrasonic Technique in Composites—Luis Lorenzo and H. Thomas Hahn	380
Filament Wound and Woven Composites	
Viscoelastic/Damage Modeling of Filament-Wound Cylindrical Pressure Vessels— JOHNNY L. PRATER AND ROBERT M. HACKETT	401

Residual Stress and Strength Loss in Filament-Wound Composites— CHARLES E. KNIGHT	413
Strength of Woven-Fabric Composites with Drilled and Molded Holes—SHI-SHEN YAU	
AND TSU-WEI CHOU	423
Discussion	437
Mechanical Behavior of Braided Composite Materials—ROBERT A. SIMONDS,	
WAYNE STINCHCOMB, AND ROBERT M. JONES	438
Author Index	455
Subject Index	457