ACHIEVEMENT OF HIGH FATIGUE RESISTANCE IN METALS AND ALLOYS

AMERICAN SOCIETY FOR TESTING AND MATERIALS

ACHIEVEMENT OF HIGH FATIGUE RESISTANCE IN METALS AND ALLOYS

A symposium presented at the Seventy-second Annual Meeting AMERICAN SOCIETY FOR TESTING AND MATERIALS Atlantic City, N. J., 22–27 June 1969

ASTM SPECIAL TECHNICAL PUBLICATION 467

List price \$28.75

AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race Street, Philadelphia, Pa. 19103

© BY AMERICAN SOCIETY FOR TESTING AND MATERIALS 1970 Library of Congress Catalog Card Number: 74-101591 ISBN 0-8031-0062-1

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication

> Printed in Baltimore, Md. September 1970

Foreword

The Symposium on Achievement of High Fatigue Resistance in Metals and Alloys was given at the Seventy-second Annual Meeting of ASTM held in Altantic City, N. J., 22–27 June 1969. ASTM Committee E-9 on Fatigue, Subcommittee I on Research sponsored the symposium, which was held in three sessions: Parameters Important to High Fatigue Resistance, H. F. Hardrath, National Aeronautics and Space Administration, chairman of Session I; Mechanisms for Achieving High Fatigue Resistance, J. C. Grosskreutz, chairman of Session II; and Processes for Achieving High Fatigue Resistance, C. E. Feltner, Ford Motor Co., chairman of Session III. J. C Grosskreutz and C. E. Feltner presided as symposium cochairmen.

Related ASTM Publications

Structural Fatigue in Aircraft, STP 404 (1966), \$18.50

Plane Strain Crack Toughness Testing of High-Strength Metallic Materials, STP 410 (1967), \$5.50

Electron Fractography, STP 436 (1968), \$11.00

Fatigue at High Temperature, STP 459 (1969), \$11.25

Contents

Introduction	1
Parameters Important to High Fatigue Resistance	
The Resistance of Metals to Cyclic Deformation—R. W. LANDGRAF	3
Crack Initiation at Stress Concentrations as Influenced by Prior Local Plas- ticity—J. H. CREWS, JR.	37
Discussion	50
The Deformation and Fracture of a Ductile Metal Under Superimposed Cyclic and Monotonic Strain—L. F. COFFIN, JR.	53
Mechanisms for Achieving High Fatigue Resistance	
Strengthening Mechanisms in Fatigue—C. E. FELTNER AND P. BEARDMORE	77
The Fatigue Strength of Nickel-Base Superalloys—M. GELL, G. R. LEVERANT, AND C. H. WELLS	113
Optimum Fatigue Crack Resistance—J. F. THROOP AND G. A. MILLER	154
Thermomechanical Processing and Fatigue of Aluminum Alloys—F. G. OSTERMANN AND W. H. REIMANN	169
Discussion	187
Processes for Achieving High Fatigue Resistance	
Surface Treatments for Fatigue Strengthening—D. K. BENSON	188
Fatigue Life Improvement Through Stress Coining Methods—E. R. SPEAKMAN	209
Discussion	226
The Role of Residual Stresses in Increasing Long-Life Fatigue Strength of Notched Machine Members—D. v. NELSON, R. E. RICKLEFS, AND W. P. EVANS	228
Discussion	252
Metal Fatigue with Elevated Temperature Rest Periods—B. I. SANDOR	254
Discussion	275
Improvement in the Fatigue Strength of Notched Bars by Compressive Self- Stresses-T. L. GERBER AND H. O. FUCHS	276