Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy

Erich Tenckhoff

STP 966

DEFORMATION MECHANISMS, TEXTURE, AND ANISOTROPY IN ZIRCONIUM AND ZIRCALOY

Erich Tenckhoff

Library of Congress Cataloging-in-Publication Data

Tenckhoff, Erich. [Verformungsmechanismen, Textur und Anisotropie in Zirkonium und Zircaloy. English] Deformation mechanisms, texture, and anisotropy in zirconium and Zircaloy/Erich Tenckhoff. (ASTM special technical publication; STP 966) Translation of: Verformungsmechanismen, Textur und Anisotropie in Zirkonium und Zircaloy. "(STP)04-966000-35." Bibliography: p. Includes index. ISBN 0-8031-0958-x 1. Zirconium. 2. Zirconium alloys. 3. Deformations (Mechanics) 4. Texture (Metallography) 5. Anisotropy. I. Title. II. Series: ASTM special technical publication; 966. TN693.Z5T4613 1988 620.1'8935-dc19

Copyright © by American Society for Testing and Materials 1988

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication. This work was originally published by Gebrüder Borntraeger Verlagsbuchhandlung, Berlin, F.R. Germany, as No. 5 of the Materialkundlich Technische Reihe in 1978.

> Printed in Philadelphia, PA March 1988

Preface

This book is aimed at students and practicing engineers who wish to extend their knowledge of the effects of deformation mechanisms on both texture formation and mechanical anisotropy. Following a general review of the deformation mechanisms in hexagonal close packed (hcp) metals, the examples of zirconium and Zircaloy (the latter being of technical importance for light water reactor fuel element cladding tubes) are used to illustrate the interactions involved. A clarification of the relationships is of interest to theoreticians, because it contributes to understanding the theory of deformation during texture formation in hcp metals. By allowing for these relationships, it is possible for the practicing engineer to select the texture of zirconium and Zircaloy semifinished products by choosing the appropriate deformation parameters, so they can then be optimally adapted to the operational demands. The knowledge gained can be applied similarly to other hcp metals, if one allows for the metal specific perimeters of the hexagonal structure.

Acknowledgments

The author would like to thank Mr. P. L. Rittenhouse, Dr. G. R. Love, and Dr. R. O. Williams for providing him with stimulating suggestions in the course of numerous technical discussions during his work at Oak Ridge National Laboratories. Professor B. Ilschner, Erlangen, F.R. Germany, is owed particular thanks for his continual support and encouraging interest in the continuation of this work. Professor M. von Heimendahl, Erlangen, and Dr. K.-H. Matucha, Frankfurt, F.R. Germany, are also thanked for their stimulating technical discussions. Finally, the author would like to thank Professor I. Grewen, Bonn, F.R. Germany, and Professor U. Rösler and Professor K. Zwicker, Erlangen, for their valuable suggestions.

Contents

Chapter 1-	-Introduction	1
Chapter 2–	-Deformation Mechanisms	3
	2.1 Deformation Mechanisms in HCP Metals	3
	2.1.1 Slip Modes	3
	2.1.1.1 Slip Plane	4
	2.1.1.1.1 Effect of the c/a	5
	axial ratio	
	2.1.1.2 Slip Direction	5
	2.1.1.2.1 Influence of the	8
	stacking fault	
	energy, γ	
	2.1.2 Twinning	12
	2.1.3 Kink Bands	18
	2.2 Deformation Mechanisms in Zirconium and	19
	Zircaloy	
	2.2.1 Slip Modes	19
	2.2.2 Twinning Modes	23
	2.3 Factors Influencing the Deformation	25
	Mechanisms	
	2.3.1 Schmid Factor	25
	2.3.2 Critical Resolved Shear Stress, $\tau_{(crss)}$	28
	2.3.2.1 Dependence on Impurities	30
	and Alloying Elements	
	2.3.2.2 Dependence on the	31
	Deformation Temperature	
	2.3.3 Deformation Direction	31
	2.3.4 Multiaxial Stress Conditions	31
	2.3.5 Compatibility Conditions	33
	2.3.6 Preferred Crystallographic	34
	Orientation	
Chapter 3-	-Texture Development	35
L.	3.1 Quantitative Determination of Textures	35
	3.2 Theory about the Development of	36
	Deformation Textures in HCP Metals	
	3.3 Characteristics of Deformation Textures in	44
	HCP Metals	

3.4 Deformation Textures in Zirconium and	45
Zircaloy	
3.4.1 Texture in Tubing	46
3.4.1.1 Influence of the Relative	48
Ratio of Reduction in Wall	
Thickness-to-Diameter	
3.4.1.2 Final Stable Positions	48
3.4.1.3 Intensity Maxima Between	49
the Stable Final Positions in	
the Radial and Tangential	
Directions	
3.4.1.4 Texture Gradient Through the	49
Tube Wall	.,
3.4.1.5 Texture Development in	49
Sequential Steps	.,
3.4.1.6 Influence of the Fabrication	50
Method	50
3 1 2 Textures in Sheet	53
2.4.2 Textures in Wire	54
2.5 Appending Textures in Zirconium and	54
5.5 Annealing Textures in Zirconium and	54
Zircaloy	
Chapter 4—Mechanical Anisotropy	
4.1. Influence of the Deformation Mechanisms	55
4.1 Influence of the Deformation Mechanisms	55
Zingeley Meterial	
A 1 1 Zimeni w and Zimeley Plates	55
4.1.1 Zirconium and Zircaloy Plates	33 50
4.1.2 Zircaloy Tubing	50 (1
4.2 Representation of Mechanical Anisotropy	61
for Biaxial Stress Conditions	()
4.2.1 Yield Loci	61
4.2.2 Creep Loci	65
4.2.3 Burst Loci	67
4.3 Effects of Creep and Irradiation on the	68
Operative Deformation Systems in Zircaloy	
Tubing under Reactor Conditions	
4.3.1 Creep	69
4.3.2 Neutron Irradiation	69
Chapter 5—Summary	70
Chapter 6—References	

ISBN 0-8031-0958-X