Quality Control of Soil Compaction Using ASTM Standards # **Quality Control of Soil Compaction Using ASTM Standards** **Prepared by Committee D18 on Soil and Rock** ASTM Stock Number: MNL70 ASTM International 100 Barr Harbor Drive PO Box C700 West Conshohocken, PA 19428-2959 Printed in U.S.A. #### **Library of Congress Cataloging-in-Publication Data** Talbot, James R., 1938- Quality control of soil compaction using ASTM standards / James R. Talbot; prepared by Committee D18 on Soil and Rock. p. cm. "ASTM stock number: MNL70." Includes bibliographical references and index. ISBN 978-0-8031-7023-0 - 1. Fills (Earthwork)-Testing. 2. Fills (Earthwork)-Standards. 3. Soil compaction-Quality control. - I. ASTM Committee D-18 on Soil and Rock. II. Title. TA715.T255 2011 624.15-dc23 2011012808 Copyright © 2011 ASTM International, West Conshohocken, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher. #### **Photocopy Rights** Authorization to photocopy items for internal, personal, or educational classroom use of specific clients is granted by ASTM International provided that the appropriate fee is paid to ASTM International, 100 Barr Harbor Drive, PO Box C700. West Conshohocken, PA 19428-2959, Tel: 610-832-9634; online: http://www.astm.org/copyright/ ASTM International is not responsible, as a body, for the statements and opinions advanced in the publication. ASTM does not endorse any products represented in this publication. ## **Foreword** THIS PUBLICATION, *Quality Control of Soil Compaction Using ASTM Standards*, was sponsored by Committee D18 on Soil and Rock. This is Manual 70 of the ASTM International manual series. ## **Acknowledgments** This manual is supported by subcommittee D18.08. The following members of that subcommittee submitted material to start the process of reviewing and editing for content in the manual: James R. Talbot, USDA, Soil Conservation Service Amster K. Howard, USDI, Bureau of Reclamation Keith Rademacher, Chem Nuclear Geotech Prof. C.W. Lovell, Civil Engineering Dept., Purdue University Donald W. Shanklin, USDA, Soil Conservation Service Raphael A. Torres, California Dept. of Water Resources Jeff Farrar, USDI, Bureau of Reclamation James Talbot and Jeff Farrar collaborated on the initial editing. In 1999 on July 1–2, committee D18 sponsored a symposium titled "Constructing and Controlling Compaction of Earth Fills". The symposium was held in Seattle, Washington. The symposium produced STP 1384 which was published in 2000. Subcommittee D18.08 members Donald Shanklin, Keith Rademacher, and James Talbot were the editors of STP 1384. The final session of the symposium featured a review and discussion of the proposed manual, entitled, "Testing Compaction of Earth Fills Using ASTM Standards". The final editing of the manual was passed to the Chairman of D18, Terry Hawk and Christopher Hardin. With the sudden death of Terry Hawk in 2004, the uncompleted manual was sent to Donald Shanklin. The bulk of the work remaining was putting together the visual aspects of the manual. This was accomplished with the help of Wendy Pierce, a computer graphical artist for USDA, Natural Resources Conservation Service. Jeff Farrar was also helpful in supplying visual materials from the Bureau of Reclamation. Beginning with Terry Hawk, then Jim Horton, and finally Ron Ebelhar, all these Committee D18 Chairmen, supported the effort to complete this work. In addition, Bob Morgan, ASTM Staff Manager for D18, has been a continual supporter. Kathy Dernoga, ASTM Managing Editor for Books and Journals has been with the project from the very beginning and finally gets to see a product. #### **Dedication** This publication, "Quality Control of Soil Compaction Using ASTM Standards," is dedicated to the memory of former Committee D18 Chairman, Terry Hawk. Terry had risen to the leadership of Committee D18 through his 20 years of exemplary hard work and quality performance. He sometimes faltered in pronouncing the names of those receiving awards at Main Committee Meetings, but never faltered in his dedication and performance to the work of an ASTM volunteer. Terry rescued the "Compaction Manual," as it was commonly referred to, and recruited a young engineer, Chris Hardin, from Geo-Environmental Engineering, to work with him and tackle the final editing to keep the project moving forward. They completed the editing and identified most of the visuals needed for the manual. Then, suddenly, on January 24, 2004, Terry Hawk died, unable to complete the project he believed in and had nurtured along. Rest easy, Terry. ## **Contents** | List of Referenced ASTM S | tandards | ix | |---|---|----| | Chapter 1: Introduction | | 1 | | A. Purpose and Scope | of this Manual | 1 | | B. General History of | Soil Compaction and Methods of Control | 1 | | | npaction Tests, Density Tests, and Project Specifications | | | | for ASTM Standard Test Methods | | | • | | | | Chapter 2: Means, Method | s, and Mechanics of Compaction | 9 | | • | Types and Terms for Fill Compaction | | | • | ound—Mechanics of Compaction | | | • | action on Engineering Properties | | | - | paction for Soils in Adverse Weather Conditions | | | | nent | | | • | | | | | | | | • | paction Tests | | | A. Purpose and Use of | f Laboratory Compaction Tests | 22 | | B. Description of Star | dard and Modified Compaction Tests | 23 | | C. Description of the | Index Density and Unit Weight Test Methods | 26 | | References | | 29 | | Chanter 1: Standard Test F | rocedures for Determining Density or Unit Weight of Soil in Place 3 | 30 | | • | f In-Place Density or Unit Weight Tests | | | | Determining In-Place Density or Unit Weight | | | | Density Testing and Quality Control of Very-Coarse-Grained Soils (Rock Fill) 4 | | | | | | | References | | +3 | | | rocedures for Determining the Water Content of Soils4 | | | A. Purpose and Use of | f Water Content Tests4 | 14 | | B. Standard Tests for | Determining Water Content of Soil4 | 14 | | References | | 50 | | Chanter 6: Quality Control | and the Coordinated Use of Laboratory and In-Place Tests for Compaction Testing 5 | 51 | | • | andy Fine Grained Soil with Little or No Gravel | | | • | with Gravel (5 % or More Retained on the No. 4 Sieve and up to 30 % Retained | ,, | | | | 52 | | | d or Gravel Mixtures, or Both with More than 12 % Fines and More than 30 % | | | | n. Sieve | 54 | | | and or Gravel Mixtures, or Both with Less than 12 % Fines (Material Passing the to 30 % Retained on the 3/4-in. Sieve | 54 | | - | ecks | | | | andard Reference Density | | | | | | | • | | | | кетеrences | 5 | 9 | #### viii CONTENTS | Appendix A: Flow Charts and Tables | | |---|----| | Appendix B: Forms and Typical Lab Results | 69 | | Appendix C: Photos | 90 | | Index | 93 | # **List of Referenced ASTM Standards** | ASTM C127 | Standard Test Method for Density, Relative
Density (Specific Gravity), and Absorption of
Coarse Aggregate | |-------------------|---| | ASTM D558 | Standard Test Methods for Moisture-Density
(Unit Weight) Relations of Soil-Cement
Mixtures | | ASTM D559 | Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures | | ASTM D560 | Standard Test Methods for Freezing and
Thawing Compacted Soil-Cement Mixtures | | ASTM D698 | Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft³ (600 kN-m/m³)) | | ASTM D1556 | Standard Test Method for Density and Unit
Weight of Soil in Place by the Sand Cone
Method | | ASTM D1557 | Standard Test Methods for Laboratory
Compaction Characteristics of Soil Using
Modified Effort (56,000 ft-lbf/ft ³ (2,700
kN-m/m ³)) | | ASTM D1558 | Standard Test Method for Moisture Content
Penetration Resistance Relationships of
Fine-Grained Soils | | ASTM D2166 | Standard Test Method for Unconfined Compressive Strength of Cohesive Soil | | ASTM D2167 | Standard Test Method for Density and Unit
Weight of Soil in Place by the Rubber Bal-
loon Method | | ASTM D2216 | Standard Test Methods for Laboratory
Determination of Water (Moisture) Content
of Soil and Rock by Mass | | ASTM D2435 | Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading | | ASTM D2487 | Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) | | ASTM D2488 | Standard Practice for Description and Identification of Soils (Visual-Manual Procedure) | | ASTM D2850 | Standard Test Method for Unconsolidated-
Undrained Triaxial Compression Test on
Cohesive Soils | | ASTM D2937 | Standard Test Method for Density of Soil in
Place by the Drive-Cylinder Method | | • | 1 | |-------------------|--| | ASTM D3017 | Standard Test Method for Water Content of
Soil and Rock in Place by Nuclear Methods
(Shallow Depth) (Withdrawn 2007) | | ASTM D3665 | Standard Practice for Random Sampling of Construction Materials | | ASTM D4253 | Standard Test Methods for Maximum Index
Density and Unit Weight of Soils Using a
Vibratory Table | | ASTM D4254 | Standard Test Methods for Minimum Index
Density and Unit Weight of Soils and Calcu-
lation of Relative Density | | ASTM D4564 | Standard Test Method for Density and Unit
Weight of Soil in Place by the Sleeve
Method | | ASTM D4643 | Standard Test Method for Determination of
Water (Moisture) Content of Soil by Micro-
wave Oven Heating | | ASTM D4718 | Standard Practice for Correction of Unit
Weight and Water Content for Soils Con-
taining Oversize Particles | | ASTM D4914 | Standard Test Methods for Density and Unit
Weight of Soil and Rock in Place by the
Sand Replacement Method in a Test Pit | | ASTM D4944 | Standard Test Method for Field Determina-
tion of Water (Moisture) Content of Soil by
the Calcium Carbide Gas Pressure Tester | | ASTM D4959 | Standard Test Method for Determination of
Water (Moisture) Content of Soil By Direct
Heating | | ASTM D5030 | Standard Test Method for Density of Soil
and Rock in Place by the Water Replace-
ment Method in a Test Pit | | ASTM D5080 | Standard Test Method for Rapid Determination of Percent Compaction | | ASTM D5084 | Standard Test Methods for Measurement of
Hydraulic Conductivity of Saturated Porous
Materials Using a Flexible Wall
Permeameter | | ASTM D6938 | Standard Test Method for In-Place Density
and Water Content of Soil and Soil-Aggre-
gate by Nuclear Methods (Shallow Depth) |