

ASTM INTERNATIONAL Selected Technical Papers

Bearing Steel Technologies: 10th Volume, Advances in Steel Technologies for Rolling Bearings

STP 1580 Editor: John M. Beswick

SELECTED TECHNICAL PAPERS STP1580

Editor: John M. Beswick

Bearing Steel Technologies: 10th Volume, Advances in Steel Technologies for Rolling Bearings

ASTM Stock #STP1580

ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19438-2959. Printed in the U.S.A.

Library of Congress Cataloging-in-Publication Data

ISBN: 978-0-8031-7605-8 **ISSN:** 2160-2050

Copyright © 2015 ASTM INTERNATIONAL, West Conshohocken, PA. All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of the publisher.

Photocopy Rights

Authorization to photocopy items for internal, personal, or educational classroom use, or the internal, personal, or educational classroom use of specific clients, is granted by ASTM International provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

The Society is not responsible, as a body, for the statements and opinions expressed in this publication. ASTM International does not endorse any products represented in this publication.

Peer Review Policy

Each paper published in this volume was evaluated by two peer reviewers and at least one editor. The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM International Committee on Publications.

The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of the peer reviewers. In keeping with long-standing publication practices, ASTM International maintains the anonymity of the peer reviewers. The ASTM International Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM International.

Citation of Papers

When citing papers from this publication, the appropriate citation includes the paper authors, "paper title", STP title, STP number, book editor(s), page range, Paper doi, ASTM International, West Conshohocken, PA, year listed in the footnote of the paper. A citation is provided on page one of each paper.

Printed in Bay Shore, NY February, 2015

Foreword

This compilation of *Selected Technical Papers*, STP1580 on *Bearing Steel Technologies*: *10th Volume, Advances in Steel Technologies for Rolling Bearings* contains 31 papers presented at a symposium with the same name held in Toronto, Ontario, CN, May 6–8, 2014. The symposium was sponsored by the ASTM International Committee A01 on Steel, Stainless Steel and Related Alloys and Subcommittee A01.28 on Bearing Steels.

The Symposium Chairman and STP Editor is John M. Beswick, SKF Group Technology Development, Nieuwegein, Netherlands.

Contents

Overview	vi	
Advances in Bearing Steel Steelmaking and Processing		
On the Effect of Consumable Electrode Remelt Processes on Steel Cleanliness Peter Glaws and R. Scott Hyde	3	
Thermodynamic Calculations Versus Instrumental Analysis of Slag-Steel Equilibria in an ASEA-SKF Ladle Furnace Kamrooz Riyahi Malayeri, Patrik Ölund, and Ulf Sjöblom	16	
Steelmaking Technologies and With Focus on Micro Inclusion Development for 700 ktons Production of State-of the Art 1C-1.5Cr Bearing Steel Qian Gang, Li Guozhong, Xu Xiaohong, and Hans-Åke Munther	27	
Modelling of Micro-Segregation in a 1C-1.5Cr Type Bearing Steel Peter F. F. Walker, Aidan Kerrigan, Matthew Green, Nina Cardinal, James Connell, and Pedro E. J. Rivera-Díaz-del-Castillo	54	
Steel Cleanliness Knowledge and Relationships with Rolling Bearing Functional Properties		
Influence of Sulfur Inclusion Content on Rolling Contact Fatigue Life Markus Dinkel and Werner Trojahn	83	
Microscope Inclusion Rating Standards and Fatigue Initiation Propensity Thore B. Lund and Susanne Stude	100	
Non-Metallic Inclusion Density in Bearing Steel Characterized by Ultrasonic Testing F. Midroit, F. Merchi, and M. Meheux-Millot	116	
Characterization of Non-Metallic Inclusions in Bearing Steels by Means of Focused Ion Beam Aldara Naveira Suarez	126	

Crack Initiation and Propagation Behavior Around the Defect in Steel Under		
Rolling Contact Fatigue	147	
Takeshi Fujimatsu, Toshifusa Nakamizo, Morihiko Nakasaki, and Norimasa Tsunekage		
Improvement of the Rolling Contact Fatigue Resistance in Bearing Steels		
by Adjusting the Composition of Oxide Inclusions	173	
Masaki Shimamoto, Tomoko Sugimura, Sei Kimura, Akihiro Owaki, Masaki Kaizuka, and Yosuke Shindo		

New Bearing Steels for Improved Functional Properties

Improved Chemical Composition of Low Alloyed High Carbon Martensitic	
Bearing Steels for Higher Fatigue Strength	189
Brigitte Clausen, Christoph Stöberl, Werner Trojahn, and Hans-Werner Zoch	
Slip-Rolling Resistance of Alternative Steels Under High Contact Pressures	
in Engine Oils	210
Mathias Woydt and Christian Scholz	
Review of XD15NW (Through Hardening) and CX13VDW (Case Carburizing)	
Cost-Effective Corrosion Resistant Bearing Steels Grades	239
Olivier Laurent, Jacques Bellus, Sylvain Puech, Franck Devilder, and Atman Benbahmed	
Introduction of Nitrided M50 and M50NiL Bearings Into Jet Engine Mainshaft	
Applications	259
Mark Rhoads, Mike Johnson, Keith Miedema, Jon Scheetz, and Jeff Williams	
Enhanced Performance of Rolling Bearings by Improving the Resistance	
of Rolling Elements to Surface Degradation	272
Hiroki Komata, Yasuhiro Iwanaga, Tohru Ueda, Koji Ueda,	
and Nobuaki Mitamura	
Novel High-Carbon High-Vanadium PM Steel for High-Load Rolling Bearing	
Applications	291
Mohamed Y. Sherif	
Advantages and Shortcomings of Retained Austenite in Bearing Steels: a Review	312
Christine Sidoroff, Michel Perez, Pierre Dierickx, and Daniel Girodin	
High Integrity Powder Metallurgy for Demanding Bearing Applications	349
F. Sandberg, J. Olofsson, D. Rébois, and S. Sundin	

Softening and Hardening Heat Treatment Physical Metallurgy

Accelerated Carbide Spheroidization of 100CrMnSi6-4 Bearing Steel by Hot Rolling 371 Jaromir Dlouhy, Daniela Hauserova, and Zbysek Novy

Microstructure and Properties of Hardened 100CrMnSi6-4 Bearing Steel After Accelerated Carbide Spheroidization and Long-Duration Annealing	389
Daniela Hauserova, Jaromir Dlouhy, and Zbysek Novy	
Kinetics of Bainite Formation in 100Cr6 and Similar High-Carbon Steel Grades	410
T. Sourmail, V. Smanio, and G. Auclair	
Austempering Effects on the Rolling Contact Fatigue Characteristics	
of Bearing Steels	421
Seon Ho Lee and Hee Jae Kang	
Low Temperature Plasma Nitriding of Pyrowear 675	444
Hitesh K. Trivedi and Ray Monahan	
Heat Treatment Process for Martensitic Stainless Steel Pyrowear 675 for	
Improved Corrosion Resistance	465
Hitesh K. Trivedi, Frederick Otto, Bryan McCoy, Rabi S. Bhattacharya, and Timothy Piazza	

Rolling Bearing Metallurgy for Wind Energy Applications

A Review: The Dilemma With Premature White Etching Crack (WEC) Bearing Failures		
Kenred Stadler, Junbiao Lai, and Reinder Hindrik Vegter		
Material Qualification of Main Bearings for Large Wind Energy Turbines	509	
Marco Burtchen, Uwe Maschelski, and Bernd Lüneburg		

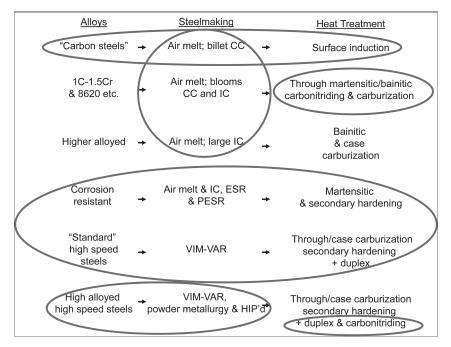
Developments in Fatigue and Rolling Contact Fatigue Testing

Mechanical Twinning in Aircraft Engine Bearing Steel	525
J. R. Nygaard, R. H. Vegter, M. Rawson, P. Danson, and H. K. D. H. Bhadeshia	
Flat Washer Test Practice—Statistical Analysis	538
M. Millot-Meheux and E. Henault	
Understanding Microstructural Transitions Occurring Under Rolling	
Contact Fatigue	550
P. E. J. Rivera-Díaz-del-Castillo	
Subsurface Material Response of Hypo Eutectoid Bearing Steels for Use in Energy	
Saving Rolling Bearings as a Substitute for Journal Bearings in Combustion Engines	564
Sager Dave Sircar, Jürgen Gegner, Karl-Heinz Lang, Gerhard Poll, and Rainer Joos	
Measurement of Residual Stresses in Ball Bearings by Synchrotron Radiation	590
R. H. Vegter, T. Buslaps, Y. Kadin, and H. A. Verschoor	
Author Index	603
Subject Index	605

Overview

This book is a compendium of selected technical papers (STP) from the *10th ASTM International Symposium on Bearing Steel Technologies* held in Toronto, Ontario, Canada, May 6–8, 2013. ASTM International has legacy of support to the bearing steel industry, a symposium on the subject being first held in 1946; see the seminal STP 70 and other STP's on the subject between 1974 and 2013 (STP 575, 771, 987, 1195, 1327, 1395, 1419, 1524 and 1548).

The ASTM Bearing Steel symposia are traditionally held in association with the ASTM A01 Committee Week and the A01.28 Subcommittee on Bearing Steel meetings. The remit for the Subcommittee A01.28 on Bearing Steels is to have jurisdiction over the standards for steels commonly used for ball and roller bearings. This subcommittee is responsible for preparing, reviewing and maintaining these standards and assuring that they reflect current technology.


Every bearing steel technologist aspires to participate in the ASTM International Bearing Steel Symposia and the 10th event had 35 presentations under the six section headings:

- Advances in Bearing Steel Steelmaking and Processing
- Steel Cleanliness Knowledge and Relationships with Rolling Bearing Functional Properties
- New Bearing Steels for Improved Functional Properties
- Softening and Hardening Heat Treatment Physical Metallurgy
- Rolling Bearing Metallurgy for Wind Energy Applications
- Developments in Fatigue and Rolling Contact Fatigue Testing

The purpose of STP1580 is to bring together the peer-reviewed papers to support the readers' understanding of the current state-of-the-art in rolling bearing steel technologies. A multitude of topics, within the bearing steel technologies, are covered in STP1580 as indicated in the bearing steel technology landscape figure:

From the symposium presentations, and in editing the book, a unique insight can be gained in rolling bearing steel technologies. This has resulted in some revised ideas on bearing steel steelmaking and industries micro cleanliness specification requirements, rating methods and limits for none re-melt bearing steels.

The ASTM on-line journal publications and this book would be impossible without the timely cooperation of the paper authors and peer reviewers. It is increasingly

Bearing Steel Technology Landscape - Topics Covered in STP 1580

difficult to obtain good quality peer reviews and the STP1580 Reviewers did an exceptional job in maintaining the technical integrity of the publication.

The Symposium Chairman and ASTM International are especially grateful for the support from the following rolling bearing steel industry sponsors:

AB SKF	Sweden
Amsted Rail Company Inc.	USA
Ascometal	France
Carpenter Latrobe Specialty Metals	USA
FNSteel BV	The Netherlands
Georgsmarienhütte GmbH	Germany
Gerdau Special Steel North America	USA
Kobe Steel	Japan
Sanyo Specialty Steel Co. Ltd	Japan
Schaeffler Technologies GmbH	Germany
The Timken Company	USA

The 10th symposium was attended by 129 registered participants which is considerably higher than the industry recession years (respectively 65 and 95 in 2009 and 2011) but lower than, for example, the 2001 and 2005 symposia (respectively 165 and 180 attendees). It is obvious that the subject commands a high interest level and the next ASTM international bearing steel symposium experience is anticipated in November 2016.

John M. Beswick SKF Group Technology Development Post Box 2350, 3430DT Nieuwegein, The Netherlands

ASTM INTERNATIONAL Helping our world work better

ISBN: 978-0-8031-7605-8 Stock #: STP1580

www.astm.org