CAIRNS/DICKSON

0

0 **BIOLOGICAL METHODS** for the ASSESSMENT nf **WATER QUALITY** 0 O 0 0 0 **STP 528**

AMERICAN SOCIETY FOR TESTING AND MATERIALS

BIOLOGICAL METHODS FOR THE ASSESSMENT OF WATER QUALITY

A symposium presented at the Seventy-fifth Annual Meeting AMERICAN SOCIETY FOR TESTING AND MATERIALS

ASTM SPECIAL TECHNICAL PUBLICATION 528 John Cairns, Jr. and K. L. Dickson, editors Virginia Polytechnic Institute and State University

04-528000-16

AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race Street, Philadelphia, Pa. 19103

© BY AMERICAN SOCIETY FOR TESTING AND MATERIALS 1973 Library of Congress Catalog Card Number: 72-97868

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

> Printed in Baltimore, Md. June 1973 Third Printing, Baltimore, Md. July 1976

Fourth Printing, July 1981 Cockeysville, Md.

Foreword

The Symposium on Biological Methods for the Assessment of Water Quality was presented at the Seventy-fifth Annual Meeting of ASTM held in Los Angeles, Calif., 26–29 June 1972. The symposium was sponsored by Committee D-19 on Water, and was designed to form Subcommittee D-19.01 on Biological Monitoring. John Cairns, Jr. and K. L. Dickson, Virginia Polytechnic Institute and State University, presided as cochairmen.

Related ASTM Publications

ASTM Manual on Water, STP 442 (1969), \$16.50 Microorganic Matter in Water, STP 448 (1969), \$9.50

Contents

Introduction	1
Interaction of Engineers and Biologists in Water Quality Management- W. W. ECKENFELDER, JR.	3
The ABC's of Pollutant Bioassay Using Fish—J. B. SPRAGUE Terminology The Basic Method Other Types of Tests and Application of Results	6 7 8 23
Mixing Zone Concepts—C. M. FETTEROLF, JR. State Standards Concepts to Consider Concluding Remarks	31 32 36 44
Biological Monitoring of the Aquatic Environment —C. I. WEBER Types of Monitoring Data Storage and Retrieval System Biological Methodology Developing Techniques Conclusion	46 50 51 53 56 58
Bacteria and the Assessment of Water Quality—T. L. BOTT Health Aspects Bacterial Activity and Water Quality Summary and Conclusions	61 62 68 72
Use of Algae, Especially Diatoms, in the Assessment of Water Quality- RUTH PATRICK Field Evaluations of Algae as Indicators Laboratory Use of Algae as Indicators Discussion	76 77 90 91
Use of Aquatic Invertebrates in the Assessment of Water Quality— A. R. GAUFIN Changes in Aquatic Ecosystems Caused by Organic Pollution Macroinvertebrates as Indicators of Organic Pollution Aquatic Macroinvertebrate Communities as Indicators of Organic Pol- lution Indicators of Other Types of Pollution Discussion Aquatic Communities as Biological Indices Summary	96 97 98 106 109 111 112 115
Continuous-Flow Bioassays with Aquatic Organisms: Procedures and Ap- plications—W. A. BRUNGS Conditions of Bioassay Uses of Bioassay Techniques of Continuous-Flow Bioassays Summary	117 118 120 121 125

A Tentative Proposal for a Rapid In-Plant Biological Monitoring System —JOHN CAIRNS, JR., R. E. SPARKS, AND W. T. WALLER Procedure Results Conclusions	127 128 138 143
Rapid Biological Monitoring Systems for Determining Aquatic Commu- nity Structure in Receiving Systems—JOHN CAIRNS, JR., K. L. DICKSON, AND GUY LANZA Why Include Biological Monitoring The State of the Art in Biological Monitoring Evaluating the Effects of Pollution on Aquatic Life Diversity Indices Rapid In-Stream Systems The Sequential Comparison Index—A Comunity Structure Analysis Laser Holography in Pollution Monitoring In-Stream Monitoring System	148 149 150 154 155 156 157 158
Use of Toxicity Tests with Fish in Water Pollution Control—c. E. STEPHAN AND D. I. MOUNT Short-Term Exposures Long-Term Exposures Chronic Toxicity Tests Mixing Zones Toxicological Data Bank Direct, Indirect, and Induced Effects Safety Factors	164 166 168 169 170 171 175
Assessment of Fish Flesh Tainting Substances—N. A. THOMAS Methods 1968 Results 1969 Results 1970 Studies Discussion Conclusions	178 182 186 188 188 188 189 191
Use of Histologic and Histochemical Assessments in the Prognosis of the Effects of Aquatic Pollutants-D. E. HINTON, W. M. KENDALL, AND B. B. SILVER Preservation of the Specimen Assessment of Toxicity of Substances Histologic and Histochemical Assessment in Fish Exposed to Methyl Mercury Summary	194 194 197 203 207
Stabilization Oxygen DemandV. T. STACK, JR. Biological Stabilization Reactions Stabilization Oxygen Demand Methods Conclusions	209 210 215 220
Microbiological Inhibition Testing Procedure—P. J. MARKS Growth Inhibiting Compounds Procedure for Microbiological Inhibition Test Discussion	221 222 223 226
Use of Artificial Substrate Samplers to Assess Water Pollution—T. W. BEAK, T. C. GRIFFING, AND A. G. APPLEBY Historical Development of Artificial Substrates Critical Evaluation of Types of Samples	227 228 231

Companson of Aruneial Substrate with Other Methods for Dentil	
Macroinvertebrate Sampling	236
Periphyton Samplers	237
Intertidal Plates	238
Conclusions	239
Mobile Bioassay Laboratories-R. M. GERHOLD	242
Historical Background	243
Justification for Mobile Bioassay Laboratories	243
Applications	246
Design Problems	249
Conclusions	254

